使用合成数据进行自我提升的扩散模型

文章提出了一种新的训练方法,称为使用合成数据自我改进的扩散模型(SIMS),旨在解决生成模型因使用合成数据训练而可能导致的模型自噬障碍(MAD)问题。通过在生成过程中引入负向引导,SIMS能够避免模型陷入合成数据循环导致的性能退化,提升模型生成质量,并在多个图像生成任务中取得了优异的表现。此外,SIMS还具备调节合成数据分布的能力,有助于减轻模型偏见并确保生成结果的公平性。

在这里插入图片描述

1 SIMS方法

扩散模型是一种生成模型,通过逐渐对训练数据进行噪声扩散,最终通过逆向建模的方式从噪声中恢复数据分布。具体来说,模型通过对数据实例逐步添加噪声,形成一个从真实数据到噪声数据的序列,并通过学习逆向过程生成新的数据样本。该模型在图像生成任务中表现出色,并逐渐成为生成模型的重要研究方向。

自我消耗循环及MAD

自我消耗循环(Self-consuming loop)是指生成模型在训练时使用了由先前模型生成的合成数据,这种循环可能导致模型逐渐偏离真实数据分布,最终陷入模型自噬障碍(Model Autophagy Disorder, MAD)。MAD是一种生成模型的退化现象,随着生成模型的迭代训练,使用合成数据训练的新模型会逐渐失去生成高质量、多样性数据的能力,导致模型性能下降和偏见的加剧。

SIMS方法

  • 1)避免合成数据的累积:SIMS避免将真实数据和合成数据混合成一个训练集,因为这会导致模型分布与真实世界数据之间的偏差,进而降低模型质量并强化偏差。相反,SIMS利用合成数据在生成过程中提供负向指导,以使模型生成过程远离非理想的合成数据流形。

  • 2)使用负向指导:通过训练一个辅助模型,该模型不仅使用来自基础模型的真实数据,还使用由基础模型生成的合成数据。然后可以结合这个辅助模型的得分函数与基础模型的得分函数,以反向推导出一个新的得分函数,这个新的得分函数更接近于真实的数据分布。

  • 3)迭代训练:SIMS能够在不陷入模型自噬(MAD)的情况下,对自我生成的合成数据进行迭代训练。实验显示,在一定条件下,经过100代的迭代训练后,SIMS仍能保持模型性能不下降。

    1. 控制分布:SIMS能够调整扩散模型生成的合成数据分布,以匹配任何期望的域内目标分布,这对于减少偏见和确保模型公平性具有重要意义,同时也能提高生成输出的质量。

在这里插入图片描述

2 结语

文章提出了一种利用合成数据自我改进的扩散模型(SIMS),通过负向引导避免模型自噬障碍,提升生成模型的性能和公平性。

论文题目: Self-Improving Diffusion Models with Synthetic Data

论文链接: https://arxiv.org/abs/2408.16333

PS: 欢迎大家扫码关注公众号_,我们一起在AI的世界中探索前行,期待共同进步!
在这里插入图片描述

### DeepSeek 大模型微调以生成图像 DeepSeek 是一种基于 Transformer 的大型语言模型,尽管它主要设计用于自然语言处理任务,但在某些情况下也可以通过适配技术扩展到多模态领域(如文本到图像生成)。然而,DeepSeek 官方并未提供专门针对图像生成的预训练权重或框架。因此,在这种场景下可以借鉴其他类似的多模态模型(如 Stable Diffusion 或 DALL·E)的技术路径。 以下是关于如何对 DeepSeek 进行微调以实现图像生成的关键技术和方法: #### 1. 文本到图像扩散模型的基础架构 在当前最先进的文本到图像生成模型中,扩散模型是一种主流方法[^3]。这些模型通常由两部分组成:一个条件化于文本嵌入的 U-Net 结构网络和一个自动编码器(Autoencoder),后者负责将高维图像压缩成低维潜在空间表示并解码回原始分辨率。如果要使 DeepSeek 支持此类功能,则需引入额外模块完成跨模态映射。 #### 2. 数据准备与标注策略 为了有效训练一个能够理解复杂指令并据此创作高质量视觉内容的新版 DeepSeek 模型,数据集构建至关重要。可以从公开可用资源下载大量带标签样本作为基础素材;同时考虑加入定制化元素满足特定需求。例如,在 DreamBooth 方法里提到过使用少量个性化照片配合精心设计好的描述词句来进行局部优化操作。 #### 3. 微调过程中的关键技术点 - **类别特定先验保持损失** 当前研究发现单纯依靠标准监督信号不足以完全约束目标属性不变形问题,所以建议采用混合形式计算总代价函数值。具体而言就是除了常规 MSE/L1距离度量外再叠加一项反映全局统计特性的惩罚项——即所谓的“自发生类别特定先验保留损失”。这种方法有助于减少因过度拟合而导致的语言漂移现象的发生几率。 - **CLIP 特征一致性评估** 在验证阶段可通过比较输入端源图片同输出端合成产物之间是否存在显著差异来判断整体效果好坏程度。这里推荐运用开源工具包 PyTorch 提供的功能接口快速搭建相应测试环境,并借助 CLIP 预提取得到固定长度向量表达进一步简化流程逻辑结构层次关系定义清晰明了便于后续维护升级等工作开展顺利推进下去直至达到预期目的为止[^4]。 ```python import torch from clip import load as load_clip device = "cuda" if torch.cuda.is_available() else "cpu" model, preprocess = load_clip("ViT-B/32", device=device) def compute_similarity(image_tensor_1, image_tensor_2): with torch.no_grad(): feature_1 = model.encode_image(preprocess(image_tensor_1).unsqueeze(0).to(device)) feature_2 = model.encode_image(preprocess(image_tensor_2).unsqueeze(0).to(device)) cosine_sim = torch.nn.functional.cosine_similarity(feature_1, feature_2) return cosine_sim.item() ``` #### 4. 学习率调度与正则化技巧 合理设置超参数组合方案往往能带来事半功倍的效果提升幅度明显加快收敛速度缩短迭代周期从而节约宝贵时间成本降低硬件设施投入强度提高经济效益最大化水平达成双赢局面共赢未来发展趋势良好前景广阔值得期待关注持续跟踪观察记录变化动态调整适应新情况新形势不断探索创新突破自我超越极限追求卓越成就非凡事业创造辉煌业绩书写传奇篇章留下永恒印记铭刻历史丰碑永载史册流芳百世万古长青千秋传颂! ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值