【图像分类】4.ResNet残差模块卷积网络的神

文章介绍了ResNet的重要性,其代码实现的关键点,如残差块的构建,以及在PyTorch中编写优雅代码的注意事项。同时,讨论了BN(BatchNormalization)的使用细节和迁移学习的应用,如调整最后一层适应自定义分类任务。
摘要由CSDN通过智能技术生成

请添加图片描述
请添加图片描述

请添加图片描述


ResNet重要性不必多说了吧,论文引用破10w,是我见过最多的,yyds!

在对照博主霹雳吧啦和官方pytorch的代码下,手撸一个resnet。如果没有看着代码写,不确定自己是否能根据论文写出model,而且写优雅代码。

如何写优雅代码?

  1. 定义基本的block【residual block有两种】
  2. 组合block 到 layer[or stage] 【_make_layer()】

Resnet代码注意点:
* 每个layer【除第一个外】的第一个block 都通过 conv 的stride=2 对 shape降采样


本节还讲了 bn, 迁移学习 载入权重

bn使用注意点:

  1. model.eval()
  2. batch_size 设置大
  3. conv - bn- relu,卷积层不用bias

迁移学习:

 1. 替换最后一层为自己的分类数

#pytorch[话题]# #深度学习[话题]# #深度学习与神经网络[话题]# #人工智能[话题]#

如何增加代码亲和力?

多看多写多练

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值