1. 什么是YOLOv11?
大家可能知道 YOLO 是 “You Only Look Once” 的缩写,意思是说,这个模型在处理一张图像时,只需要一次前向传递就能完成目标检测。这和传统的目标检测方法大有不同,后者通常需要多次迭代,逐步细化分析。而 YOLOv11 在这一点上做得非常好——它不仅能够做到实时处理,还能高效地识别图像中的多个目标。
在医学影像领域,这种一次性快速处理的能力尤其重要。比如在脑肿瘤检测中,医生通常需要分析大量的影像资料,一旦用传统方法进行人工分析,耗时和精力就变得很大。YOLOv11 的引入,解决了这个问题,它能快速地识别出影像中的目标,像肿瘤、血管、其他病变等等。
2. YOLOv11是怎么工作的?
为了帮助大家更好理解,我们来拆解一下 YOLOv11 的工作原理。YOLOv11基于深度神经网络,采用了一个叫做CSPDarknet53的骨干网络,这个网络是用来提取图像特征的。大家可以理解为,图像中的所有细节和信息,都会在这个骨干网络中被提取和分析