YOLOv8改进 | 融合改进 | C2f融合新颖的可扩张残差注意力模块助力小目标检测【完整代码】

YOLOv8改进 | 融合改进 | C2f融合新颖的可扩张残差注意力模块助力小目标检测【完整代码】


🌟 前言:小目标识别,一直是YOLO的“老大难”问题?

在复杂环境中,小目标的检测一直是目标检测中的瓶颈问题——常常出现“识别不了”、“IOU极低”、“检测框直接错过”的情况。

为了解决这个问题,今天我们带来一种改进思路:

将YOLOv8中的 C2f 模块 融合我们自定义的新型注意力结构 —— 可扩张残差注意力模块(Expandable Residual Attention,简称ERA),全面增强小目标的特征聚合能力。

适合科研论文、比赛优化、轻量部署等场景。全文含结构图、改进逻辑、完整代码,非常适合新手学习与复现!


🔍 一、C2f 是什么?为什么选择它?

C2f(Cross-Stage Partial with Feature Fusion)是 YOLOv8 中用于主干、Neck 的关键轻量模块,其特点:

  • 分支少,计算量低;
  • 有一定的多尺度
### 改进 C2F 模块以提升 YOLOv8 小目标检测性能 为了增强YOLOv8对于小目标检测能力,可以通过引入特定优化模块到C2f结构中实现这一目的。具体而言,在处理小目标时,模型往往面临特征图分辨率低以及特征表达不足的问题。 #### 结合 DWR 和 SIR 模块改善多尺度特征提取 一种有效的策略是在C2f层内嵌入Dilation-wise Residual(DWR)和Simple Inverted Residual(SIR)两种模块[^3]。这两种模块共同作用可以显著加强不同尺度下的细节捕捉: - **DWR 模块**:通过调整膨胀率参数控制感受野大小,从而适应从小到大的物体尺寸变化; - **SIR 模块**:采用倒置残差连接方式增加非线性变换次数而不大幅增加计算成本; 这种组合不仅能够有效地保留原始输入图像中的细粒度信息,而且有助于形成更具区分性的高层语义表示。 ```python class DWRSIRBlock(nn.Module): def __init__(self, channels_in, channels_out, dilation_rate=1): super(DWRSIRBlock, self).__init__() # 定义DWR部分 self.dwr_conv = nn.Conv2d(channels_in, channels_out, kernel_size=3, padding=dilation_rate, dilation=dilation_rate, groups=channels_in) # 定义SIR部分 hidden_dim = int(channels_out * expansion_ratio) self.sir_layers = nn.Sequential( nn.Conv2d(channels_out, hidden_dim, 1), nn.BatchNorm2d(hidden_dim), nn.ReLU(), nn.Conv2d(hidden_dim, channels_out, 1), nn.BatchNorm2d(channels_out) ) def forward(self, x): dwr_output = F.relu(x + self.dwr_conv(x)) sir_output = F.relu(dwr_output + self.sir_layers(dwr_output)) return sir_output ``` #### 利用ELAN注意力机制强化局部感知 除了上述的空间维度上的改进外,还可以考虑加入轻量级的ELAN(Enhanced Local Attention Network)注意力机制来进一步突出重要区域内的特征响应[^1]。这将使得网络能够在更广泛的范围内聚焦于潜在的小目标位置,进而提高识别准确性。 ```python def elan_attention(input_tensor): batch_size, channel_num, height, width = input_tensor.size() query_layer = nn.Linear(channel_num, channel_num // reduction_ratio)(input_tensor.view(batch_size, channel_num, -1).transpose(-1,-2)).softmax(dim=-1) key_layer = nn.Linear(channel_num, channel_num // reduction_ratio)(input_tensor.view(batch_size, channel_num, -1)).softmax(dim=-1) value_layer = input_tensor attention_scores = torch.matmul(query_layer, key_layer.transpose(-1,-2)) / math.sqrt(channel_num // reduction_ratio) attention_weights = F.softmax(attention_scores, dim=-1) context_vector = torch.matmul(attention_weights, value_layer.view(batch_size, channel_num, -1).transpose(-1,-2)).transpose(-1,-2)\ .view(batch_size, channel_num, height, width) output = input_tensor + context_vector return output ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

空间机器人

您的鼓励是我创作最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值