YOLOv8改进 | 融合改进 | C2f融合新颖的可扩张残差注意力模块助力小目标检测【完整代码】
🌟 前言:小目标识别,一直是YOLO的“老大难”问题?
在复杂环境中,小目标的检测一直是目标检测中的瓶颈问题——常常出现“识别不了”、“IOU极低”、“检测框直接错过”的情况。
为了解决这个问题,今天我们带来一种改进思路:
将YOLOv8中的 C2f 模块 融合我们自定义的新型注意力结构 —— 可扩张残差注意力模块(Expandable Residual Attention,简称ERA),全面增强小目标的特征聚合能力。
适合科研论文、比赛优化、轻量部署等场景。全文含结构图、改进逻辑、完整代码,非常适合新手学习与复现!
🔍 一、C2f 是什么?为什么选择它?
C2f(Cross-Stage Partial with Feature Fusion)是 YOLOv8 中用于主干、Neck 的关键轻量模块,其特点:
- 分支少,计算量低;
- 有一定的多尺度