Noise

本文探讨了电子设备中的噪声来源,包括Shot Noise、Thermal Noise、Flicker Noise、Burst Noise和Avalanche Noise。Shot Noise与电流相关,Thermal Noise源于电子的热运动,不受直流电流影响。Flicker Noise和Burst Noise具有非高斯分布,而Avalanche Noise涉及到集成电路上的噪声模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

噪声观察的一条简单规则是:(通过智力地)对每个晶体管的栅电压作很小的变化,而后预计输出的效果。

套筒式和折叠式运放:在相对低的频率时,共源共栅器件产生的噪声可忽略;

Sources of Noise
1、Shot Noise
Shot noise is always associated with a direct-current flow and is present in diodes, MOS transistors, and bipolar transistors.
The origin of shot noise can be seen by considering the diode of Fig. 11.1a and the carrier concentrations in the device in the forward-bias region as shown in Fig. 11.1b.
在这里插入图片描述
The passage of each carrier across the junction, which can be modeled as a random event, is dependent on the carrier having sufficient energy and a velocity directed toward the junction. Thus external current I, which appears to be a steady current, is, in fact, composed of a large number of random independent current pulses. If the current is examined on a sensitive oscilloscope, the trace appears as in Fig. 11.2, where ID is the average current.
在这里插入图片描述
在这里插入图片描述

### Noise2Noise 的原理 Noise2Noise 是一种用于图像去噪的自监督学习方法,旨在解决传统有监督去噪方法面临的挑战。传统的去噪方法依赖于成对的干净和带噪图像作为训练数据,这在实际应用中往往难以获取。相比之下,Noise2Noise 利用了同一场景下的多张带噪图像来进行训练[^2]。 具体而言,Noise2Noise 方法的核心思想是在不使用任何干净图像的情况下,仅依靠带有不同噪声实例的相同场景图像对来训练神经网络。这种做法基于这样一个假设:尽管每张图像都含有噪声,但这些噪声是独立同分布的;因此,通过最小化预测图像与目标带噪图像之间的差异,可以有效地去除噪声并恢复原始信号[^4]。 ### 应用领域 由于不需要配对的清洁样本,使得 Noise2Noise 能够广泛应用于各种现实世界的图像处理任务: - **医学影像**:对于 CT 扫描、MRI 成像等医疗设备产生的图像,通常无法轻易获得未受污染的标准参照物; - **天文摄影**:拍摄遥远天体时不可避免地引入热电子散粒等因素造成的随机波动; - **监控视频流**:长时间录制过程中可能出现环境光照变化引起的伪影等问题。 以上应用场景共同特点是难以收集大量标注好的纯净版素材,而采用 Noise2Noise 技术则可有效缓解此困境。 ### 实现方式 为了实现上述功能,Noise2Noise 构建了一个端到端的学习框架,其中输入是一幅或多幅含噪图片,输出则是经过净化后的估计结果。以下是其实现的关键要素之一 —— 数据增强策略: #### 数据增强 考虑到单一类型的加性高斯白噪音不足以覆盖所有实际情况,在预处理阶段会对源文件施加以多种变换操作,比如调整亮度对比度曲线、旋转翻转角度以及裁剪缩放比例等等。这样做不仅增加了模型泛化能力,还间接促进了内部特征表达的一致性和稳定性。 此外,损失函数的设计也至关重要。不同于常规意义上追求像素级重构误差最小化的思路,这里更强调统计意义上的相似度匹配,即期望得到的结果应当尽可能接近真实的概率分布特性而非特定形态上的精确吻合。为此,采用了均方根误差 (RMSE) 或者 L1/L2 正则项等形式定义的目标函数,并配合 Adam 等优化器完成参数更新迭代过程。 ```python import torch.nn as nn class Net(nn.Module): def __init__(self, num_channels=3): super(Net, self).__init__() # 定义卷积层和其他必要的组件... def forward(self, x): # 前向传播逻辑... loss_fn = nn.MSELoss() # 使用 MSE Loss 函数 optimizer = torch.optim.Adam(net.parameters(), lr=learning_rate) for epoch in range(num_epochs): for data in dataloader: noisy_images, _ = data optimizer.zero_grad() outputs = net(noisy_images) loss = loss_fn(outputs, noisy_images) loss.backward() optimizer.step() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值