Δ Σ型 DAC

       与Δ Σ ADC相似,有一类 DAC也会采用 delta-sigma技术以提高转换的精度。一般来讲多数的音频 DAC会采用Δ Σ技术以提高音频的输出的质量。如下图所示,为 24位过采样音频 DA转换器 PCM175x的内部模块框图。

       Δ Σ DAC内部包括插值滤波器和Δ Σ调制器(包含数字积分器、量化器的和反馈回路的模块),开关电容 DAC和模拟低通滤波器。其关键模块为Δ调制器,基本工作原理和Δ ΣADC相似。其核心部分是一个Δ调制器,见下图。输入信号 X1通过Δ调制器被调制成X2,在调制器内部,首先对输入信号进行积分,当积分后的值大于输入信号 X1,X2输出即为正,反之,X2输出为负。经过这样的调理,我们可以发现,对 X2进行积分的结果即为X3。对于 X2信号经过一个 1位的开关电容 DAC转换为模拟信号,通过积分即可还原出原始数字输入信号对应的模拟信号,再经过低通滤波滤除高频噪声,将信号平滑,即可得到高精度的模拟输出信号。在实际的 DAC中,后面的积分工作会移到信号的开始,即 X1之前进行。这样做可以避免Δ调制器对较快变化的输入信号相应的延迟,以及对直流的无法相应。

 

 

 

### Delta-Sigma DAC 的工作原理 Delta-Sigma 数模转换器(DAC)是一种基于过采样技术的架构,其核心在于通过高分辨率的时间离散化来实现低分辨率的模拟信号输出。这种设计利用了噪声整形技术和反馈回路,从而显著提高了数模转换精度。 #### 基本结构 Delta-Sigma DAC 的基本结构由以下几个部分组成: 1. **累加器/积分器**:用于接收输入数据流并对其进行累积操作。 2. **量化器**:将经过积分处理后的信号转化为较低位宽的数字表示形式。 3. **反馈路径中的 1-bit 或多比特 DAC**:该模块负责将量化结果重新转换为模拟量,并将其送回到差分放大器中形成闭环控制[^1]。 整个系统的运行依赖于高频时钟驱动下的连续更新过程,在每一个周期内完成一次新的计算与调整动作。 #### 工作机制详解 当一个 N-bits 数据被送到 delta-sigma 调制器之后,它会先经历一系列复杂的运算步骤: - 输入样本值会被传递给第一个级联单元——即前向通道上的累加装置; - 接下来此数值再进入比较环节也就是所谓的“量化”阶段;在这里原本可能具有较高动态范围变化特性的电信号将会转变成仅有两个极端状态之一的形式呈现出来(+Vref or -Vref),这一步骤极大地简化了后续硬件电路的设计难度同时也降低了功耗需求水平; - 随后产生的单极性脉冲序列又作为误差补偿依据反作用到原始输入端口处构成负反馈网络连接关系. 上述描述实际上就是标准意义上的第一阶ΣΔ调变算法流程图解说明版本而已, 如果想要获得更加精确逼真的还原效果的话还可以继续增加额外几层类似的子系统组合起来共同协作运作(比如二阶或者三阶等等不同复杂度等级的选择). ```python def delta_sigma_dac(input_signal, oversampling_ratio=64): """ Simulates a basic first-order Delta-Sigma DAC. Args: input_signal (list): A list of integers representing the digital signal. oversampling_ratio (int): Oversampling ratio used in modulation process. Returns: list: Analog output after processing through Delta-Sigma DAC. """ accumulator = 0 output_signal = [] for sample in range(len(input_signal)*oversampling_ratio): current_sample_index = int(sample / oversampling_ratio) accumulator += input_signal[current_sample_index] if accumulator >= 0: output_bit = 1 else: output_bit = -1 accumulator -= output_bit output_signal.append(output_bit) return output_signal ``` 以上代码片段展示了一个简单的一阶 Delta-Sigma DAC 模拟程序。其中 `input_signal` 是待转换的数字化音频或其他类的信号数组,而函数返回的是对应的模拟波形近似表达式列表。 ### 性能特点 由于采用了较高的取样频率以及内置滤波功能,因此即使采用简单的元件也可以达到较好的线性和失真指标表现。同时因为内部存在自动校正机制的缘故所以对外界干扰因素具备较强的容忍能力。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小叶爱吃汤圆

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值