模型对齐(Model Alignment) 是在人工智能(尤其是大规模机器学习模型和深度学习模型)开发和应用过程中,确保模型的行为、输出与人类的期望、目标和价值观保持一致的过程。模型对齐的核心是让模型做出符合人类预期和意图的决策和输出,避免模型做出对人类有害或不符合道德标准的行为。
随着人工智能模型越来越强大,尤其是像 GPT、BERT 等大规模预训练语言模型在诸多领域的应用,模型对齐问题变得尤为重要。如果模型没有经过良好的对齐,可能会出现误导、偏见、不安全或不道德的输出,带来负面影响。
1. 模型对齐的核心目标
模型对齐的主要目标是确保模型的行为和决策符合特定的目标和价值观,避免不符合预期的结果。具体包括以下几个方面:
- 准确性:模型的输出应该符合目标任务的标准,避免错误和误导性的输出。
- 公正性和无偏见