题目:
观察数据 ,其中 是独立同分布的(IID),且服从 利用下式估计方差 ,即:
这是无偏估计么?求 的方差,考察 会发生什么情况?
解答:
根据题目条件,可以得到:
且由于 是独立同分布的,那么 也是独立同分布的(这个暂时未证明,请网友推荐证明过程)。
那么:
因此 是无偏估计。
下面计算该估计量的方差:
又因为:
由性质:当X服从 分布时,存在:
其中,i=1,2,3…
证明参考:
k阶原点矩公式:
https://blog.csdn.net/qq_41009742/article/details/90318171
或者矩母函数:
https://zhuanlan.zhihu.com/p/148408669
于是可以得到:
因此:
由 的方差可知,当 时, 的估计趋于真值。