统计信号处理基础 习题解答2-1

该博客探讨了在统计学中,如何利用独立同分布的样本估计总体方差的问题。通过给出的公式展示了如何构建无偏估计量,并详细计算了该估计量的方差。当样本数量增加时,估计值趋于接近真实方差。内容涉及统计推断、无偏估计原理以及方差估计的收敛性。
摘要由CSDN通过智能技术生成

题目:

观察数据 ,其中 是独立同分布的(IID),且服从 利用下式估计方差 ,即:

这是无偏估计么?求 的方差,考察 ​​​​​​​会发生什么情况?

解答:

根据题目条件,可以得到:

且由于 是独立同分布的,那么 也是独立同分布的(这个暂时未证明,请网友推荐证明过程)。 

那么:

因此 是无偏估计。

下面计算该估计量的方差:

又因为:

由性质:当X服从  分布时,存在:

其中,i=1,2,3…

证明参考:

k阶原点矩公式:

https://blog.csdn.net/qq_41009742/article/details/90318171

或者矩母函数:

https://zhuanlan.zhihu.com/p/148408669

于是可以得到:

因此:

 由 的方差可知,当 时, 的估计趋于真值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值