题目
一个随机变量具有PDF 。希望在没有任何可用数据的情况下估计的一个现实。为此提出了使最小的MMSE估计量,其中期望仅是对求的。证明MMSE估计量为。将你的结果应用到例10.1,当把数据考虑进去时,证明最小贝叶斯MSE是减少的。
解答
在贝叶斯估计情况下,我们是提前知道待估计量的先验分布,即。一旦知道就能获得相应的和。
所以,这个题目的物理意义,就是在没有任何额外数据情况下,根据先验分布,那可以获得的MMSE估计量,就是,此时对应的最小方差即:
而后续只要能获得可用数据,获得的方差都比要小,而且随着数据的增多会越来越小。
下面开始证明:为了求得题目条件中的MMSE估计量,在方差中加入该估计量。令:
其中,是对的某一种估计,尽管暂时不知道,但里面肯定不包含,而
通过积分后,也不包含,因此:
所以:
为了使得上式最小,那么显然需要:
这样,第二项非负值为0,此时,MMSE最小值为:
对于例10.1来说,由10.12给出:
其中,估计量先验方差,也就是:
也就是没有任何可用数据下,即,此时:
与上述证明结论一致。后续只要获得数据,即,那么都有:
也就是贝叶斯估计情况下,只要考虑数据,那么最小贝叶斯MSE是减小的。