深度学习算法transformer(开源哈佛代码注释版)

 transformer代码有众多开源版本,nn里有nn.Transformer,为方便理解背后原理,解读哈佛开源代码,有几点需要指出

1. 在代码中,multihead attention(X)的形状和X形状一样,所以才方便将其相加,multihead attention代码和attention代码如下,,在代码中,w_q,w_k,w_v的形状都是(d_model, d_model),得到Q,K,V后将其d_model拆成(h, d_k=d_model//h),最后再拼接成d_model,注意K、V形状一样,Q形状不一定和K、V形状一样

def attention(query, key, value, mask=None, dropout=None):
    """
    实现 Scaled Dot-Product Attention
    :param query: 输入与Q矩阵相乘后的结果,size = (batch , h , L , d_model//h)
    :param key: 输入与K矩阵相乘后的结果,size同上
    :param value: 输入与V矩阵相乘后的结果,size同上
    :param mask: 掩码矩阵
    :param dropout: drop out
    """
    d_k = query.size(-1)
    scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(d_k)  
    # 计算QK/根号d_k,size=(batch,h,L,L)
    if mask is not None:
        # 掩码矩阵,编码器mask的size = [batch,1,1,src_L]
        # 解码器mask的size= = [batch,1,tgt_L,tgt_L]
        scores = scores.masked_fill(mask=mask, value=torch.tensor(-1e9))
    p_attn = F.softmax(scores, dim = -1)  
    # 以最后一个维度进行softmax(也就是最内层的行),size = (batch,h,L,L)
    if dropout is not None:
        p_attn = dropout(p_attn)
    return torch.matmul(p_attn, value), p_attn  
    # 与V相乘。第一个输出的size为(batch,h,L,d_model//h),第二个输出的size = (batch,h,L,L)
def clones(module, N):
    "工具人函数,定义N个相同的模块"
    return nn.ModuleList([copy.deepcopy(module) for _ in range(N)])

class MultiHeadedAttention(nn.Module):
    def __init__(self, h, d_model, dropout):
        """
        实现多头注意力机制
        :param h: 头数
        :param d_model: word embedding维度
        :param dropout: drop out
        """
        super(MultiHeadedAttention, self).__init__()
        assert d_model % h == 0  
        #检测word embedding维度是否能被h整除
        # We assume d_v always equals d_k
        self.d_k = d_model // h
        self.h = h  # 头的个数
        self.linears = clones(nn.Linear(d_model, d_model), 4) 
        #四个线性变换,前三个为QKV三个变换矩阵,最后一个用于attention后
        self.attn = None
        self.dropout = nn.Dropout(p=dropout)

    def forward(self, query, key, value, mask=None):
        """
        :param query: 输入x,即(word embedding+postional embedding),size=[batch, L, d_model] tips:编解码器输入的L可能不同
        :param key: 同上,size同上
        :param value: 同上,size同上
        :param mask: 掩码矩阵,编码器mask的size = [batch , 1 , src_L],解码器mask的size = [batch, tgt_L, tgt_L]
        """
        if mask is not None:
            # 在"头"的位置增加维度,意为对所有头执行相同的mask操作
            mask = mask.unsqueeze(1)  
            # 编码器mask的size = [batch,1,1,src_L]
            # 解码器mask的size= = [batch,1,tgt_L,tgt_L]
        nbatches = query.size(0) # 获取batch的值,nbatches = batch

        # 1) 利用三个全连接算出QKV向量,再维度变换 [batch,L,d_model] ----> [batch , h , L , d_model//h]
        query, key, value = \
            [l(x).view(nbatches, -1, self.h, self.d_k).transpose(1, 2)  
            # view中给-1可以推测这个位置的维度
             for l, x in zip(self.linears, (query, key, value))]

        # 2) 实现Scaled Dot-Product Attention。x的size = (batch,h,L,d_model//h),attn的size = (batch,h,L,L)
        x, self.attn = attention(query, key, value, mask=mask,dropout=self.dropout)

        # 3) 这步实现拼接。transpose的结果 size = (batch , L , h , d_model//h)
        # view的结果size = (batch , L , d_model)
        x = x.transpose(1, 2).contiguous().view(nbatches, -1, self.h * self.d_k)

        return self.linears[-1](x)   # size = (batch , L , d_model)

2. 词向量编码和位置编码代码如下,词向量编码后的形状和位置编码后的形状一样,方便相加,送入multihead attention

class Embeddings(nn.Module):
    def __init__(self, d_model, vocab):
        """
        :param d_model: word embedding维度
        :param vocab: 语料库词的数量
        """
        super(Embeddings, self).__init__()
        self.lut = nn.Embedding(vocab, d_model)
        self.d_model = d_model

    def forward(self, x):
        """
        :param x: 一个batch的输入,size = [batch, L], L为batch中最长句子长度
        """
        return self.lut(x) * math.sqrt(self.d_model)  #这里乘了一个权重,不改变维度. size = [batch, L, d_model]


class PositionalEncoding(nn.Module):
    def __init__(self, d_model, dropout, max_len=5000):
        """
        :param d_model: pe编码维度,一般与word embedding相同,方便相加
        :param dropout: dorp out
        :param max_len: 语料库中最长句子的长度,即word embedding中的L
        """
        super(PositionalEncoding, self).__init__()
        # 定义drop out
        self.dropout = nn.Dropout(p=dropout)

        # 计算pe编码
        pe = torch.zeros(max_len, d_model) # 建立空表,每行代表一个词的位置,每列代表一个编码位
        position = torch.arange(0, max_len).unsqueeze(1) # 建个arrange表示词的位置以便公式计算,size=(max_len,1)
        div_term = torch.exp(torch.arange(0, d_model, 2) *    # 计算公式中10000**(2i/d_model)
                             -(math.log(10000.0) / d_model))
        pe[:, 0::2] = torch.sin(position * div_term)  # 计算偶数维度的pe值
        pe[:, 1::2] = torch.cos(position * div_term)  # 计算奇数维度的pe值
        pe = pe.unsqueeze(0)  # size=(1, L, d_model),为了后续与word_embedding相加,意为batch维度下的操作相同
        self.register_buffer('pe', pe)  # pe值是不参加训练的

    def forward(self, x):
        # 输入的最终编码 = word_embedding + positional_embedding
        x = x + Variable(self.pe[:, :x.size(1)],requires_grad=False) #size = [batch, L, d_model]
        return self.dropout(x) # size = [batch, L, d_model]

3. 编码器和解码器的mask生成,实际在一个batch中,句子会补充成固定的长度,所以编码器会有mask,但对于时序预测,就没有编码器mask。解码器mask是两个mask的交集(类似于编码器补充成固定长度mask & 下三角mask矩阵)

class Batch:
    def __init__(self, src, trg=None, pad=0):
        """
        :param src: 一个batch的输入,size = [batch, src_L]
        :param trg: 一个batch的输出,size = [batch, tgt_L]
        """
        self.src = src
        self.src_mask = (src != pad).unsqueeze(-2)  
        #返回一个true/false矩阵,size = [batch , 1 , src_L]
        if trg is not None:
            self.trg = trg[:, :-1]   # 用于输入模型,不带末尾的<eos>
            self.trg_y = trg[:, 1:]  # 用于计算损失函数,不带起始的<sos>
            self.trg_mask = self.make_std_mask(self.trg, pad)
            self.ntokens = (self.trg_y != pad).data.sum()
    @staticmethod   #静态方法
    def make_std_mask(tgt, pad):
        """
        :param tgt: 一个batch的target,size = [batch, tgt_L]
        :param pad: 用于padding的值,一般为0
        :return: mask, size = [batch, tgt_L, tgt_L]
        """
        tgt_mask = (tgt != pad).unsqueeze(-2) 
        # 返回一个true/false矩阵,size = [batch , 1 , tgt_L]
        tgt_mask = tgt_mask & Variable(
            subsequent_mask(tgt.size(-1)).type_as(tgt_mask.data))  
            # 两个mask求和得到最终mask,[batch, 1, L]&[1, size, size]=[batch,tgt_L,tgt_L]
        return tgt_mask  # size = [batch, tgt_L, tgt_L]

def subsequent_mask(size):
    """
    :param size: 输出的序列长度
    :return: 返回下三角矩阵,size = [1, size, size]
    """
    attn_shape = (1, size, size)
    subsequent_mask = np.triu(np.ones(attn_shape), k=1).astype('uint8')   
    #返回上三角矩阵,不带轴线
    return torch.from_numpy(subsequent_mask) == 0  
    #返回==0的部分,其实就是下三角矩阵

4. 残差和层归一化,层归一化是对每个样本所有特征进行均值方差运算,然后对每个样本进行缩放偏移,残差是指   x  +   f(x),允许信息直接从前面的层流动到后面的层,防止信息在层与层之间的传递中被过多地改变或丢失,缓解深层网络的梯度消失和梯度爆炸问题,注意残差和层归一化未改变形状

class LayerNorm(nn.Module):
    def __init__(self, features, eps=1e-6):
        """
        实现层归一化
        """
        super(LayerNorm, self).__init__()
        self.a_2 = nn.Parameter(torch.ones(features))  
        # 类似BN层原理,对归一化后的结果进行线性偏移,feature=d_model,相当于每个embedding维度偏移不同的倍数
        self.b_2 = nn.Parameter(torch.zeros(features)) 
        # 偏置。系数和偏置都为可训练的量
        self.eps = eps # 保证归一化分母不为0

    def forward(self, x):
        """
        :param x: 输入size = (batch , L , d_model)
        :return: 归一化后的结果,size同上
        """
        mean = x.mean(-1, keepdim=True) # 最后一个维度求均值
        std = x.std(-1, keepdim=True)  # 最后一个维度求方差
        return self.a_2 * (x - mean) / (std + self.eps) + self.b_2   
        #归一化并线性放缩+偏移

class SublayerConnection(nn.Module):
    """
    实现残差连接
    """
    def __init__(self, size, dropout):
        super(SublayerConnection, self).__init__()
        self.norm = LayerNorm(size)   # 读入层归一化函数
        self.dropout = nn.Dropout(dropout)

    def forward(self, x, sublayer):
        """
        :param x: 当前子层的输入,size = [batch , L , d_model]
        :param sublayer: 当前子层的前向传播函数,指代多头attention或前馈神经网络
        """
        return self.norm(x + self.dropout(sublayer(x))) 
        #这里把归一化已经封装进来,size = [batch , L , d_model]

5. 前馈神经网络代码

class PositionwiseFeedForward(nn.Module):
    "实现全连接层"
    def __init__(self, d_model, d_ff, dropout):
        super(PositionwiseFeedForward, self).__init__()
        self.w_1 = nn.Linear(d_model, d_ff)
        self.w_2 = nn.Linear(d_ff, d_model)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x):
        """
        :param x: size = [batch , L , d_model]
        :return:  size同上
        """
        return self.w_2(self.dropout(F.relu(self.w_1(x))))

6. 定义encoder layer和encoder

class EncoderLayer(nn.Module):
    """
    Encoder层整体的封装,由self attention、残差连接、归一化和前馈神经网络组成
    """
    def __init__(self, size, self_attn, feed_forward, dropout):
        super(EncoderLayer, self).__init__()
        self.self_attn = self_attn  
        #定义多头注意力,即传入一个MultiHeadedAttention类
        self.feed_forward = feed_forward 
        #定义前馈,即传入一个PositionwiseFeedForward类
        self.sublayer = clones(SublayerConnection(size, dropout), 2)   
        #克隆两个残差连接,一个用于多头attention后,一个用于前馈神经网络后
        self.size = size
        # size是d_model

    def forward(self, x, mask):
        """
        :param x: 输入x,即(word embedding+postional embedding),size = [batch, L, d_model]
        :param mask: 掩码矩阵,编码器mask的size = [batch , 1 , src_L],解码器mask的size = [batch, tgt_L, tgt_L]
        :return: size = [batch, L, d_model]
        """
        x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, mask))  
        #实现多头attention和残差连接,size = [batch , L , d_model]
        return self.sublayer[1](x, self.feed_forward)  
        #实现前馈和残差连接, size = [batch , L , d_model]

encoder layer架构图如下所示

7. 定义decoder layer和decoder,在decoder中,X是label的编码,Q是等于X * w_q,K、V是相同的,都是encoder输出,注意encoder输出会进入到decoder每一层

class DecoderLayer(nn.Module):
    "解码器由 self attention、编码解码self-attention、前馈神经网络 组成"
    def __init__(self, size, self_attn, src_attn, feed_forward, dropout):
        super(DecoderLayer, self).__init__()
        self.size = size   # embedding的维度
        self.self_attn = self_attn
        self.src_attn = src_attn
        self.feed_forward = feed_forward
        self.sublayer = clones(SublayerConnection(size, dropout), 3) 
        #克隆3个sublayer分别装以上定义的三个部分


    def forward(self, x, memory, src_mask, tgt_mask):
        """
        :param x: target,size = [batch, tgt_L, d_model]
        :param memory: encoder的输出,size = [batch, src_L, d_model]
        :param src_mask: 源数据的mask, size = [batch, 1, src_L]
        :param tgt_mask: 标签的mask,size = [batch, tgt_L, tgt_L]
        """
        m = memory
        # encoder的KV,size = [batch, L, d_model]
        x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, tgt_mask)) 
        # self-atten、add&norm,和编码器一样, size = [batch, tgt_L, d_model]
        x = self.sublayer[1](x, lambda x: self.src_attn(x, m, m, src_mask)) 
        # 编码解码-attention、add&norm,Q来自target,KV来自encoder的输出,size = [batch, tgt_L, d_model]
        return self.sublayer[2](x, self.feed_forward) 
        # 前馈+add&norm, size = [batch, tgt_L, d_model]


class Decoder(nn.Module):
    "解码器的高层封装,由N个Decoder layer组成"
    def __init__(self, layer, N):
        super(Decoder, self).__init__()
        self.layers = clones(layer, N)
        self.norm = LayerNorm(layer.size)

    def forward(self, x, memory, src_mask, tgt_mask):
        for layer in self.layers:
            x = layer(x, memory, src_mask, tgt_mask)
        return self.norm(x)  # size = [batch, tgt_L, d_model]

decoder layer架构图如下所示

8. 定义encoder和decoder

class EncoderDecoder(nn.Module):
    """
    编码解码架构
    """
    def __init__(self, encoder, decoder, src_embed, tgt_embed, generator):
        super(EncoderDecoder, self).__init__()
        self.encoder = encoder  # 编码器
        self.decoder = decoder  # 解码器
        self.src_embed = src_embed  #源的embedding
        self.tgt_embed = tgt_embed  #目标的embedding
        self.generator = generator  # 定义最后的线性变换与softmax

    def forward(self, src, tgt, src_mask, tgt_mask):  # 编码解码过程
        return self.decode(self.encode(src, src_mask), src_mask,
                           tgt, tgt_mask)

    def encode(self, src, src_mask):
        return self.encoder(self.src_embed(src), src_mask)

    def decode(self, memory, src_mask, tgt, tgt_mask):
        return self.decoder(self.tgt_embed(tgt), memory, src_mask, tgt_mask)


class Generator(nn.Module):
    """
    定义一个全连接层+softmax
    """
    def __init__(self, d_model, vocab):
        super(Generator, self).__init__()
        self.proj = nn.Linear(d_model, vocab)  # vocab为整个词袋的词数

    def forward(self, x):
        """
        :param x: 输入的 size = [batch, tgt_L, d_model]
        """
        return F.log_softmax(self.proj(x), dim=-1)  #dim=-1在最后一维上做softmax

整体架构图如下

  • 12
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值