单变量微积分(三):求导公式整合,高阶微分,n的阶乘

\LARGE {\color{Red} y=(\sin t)^{a}= \sin^{a} t}

\large \frac{\mathrm{d} }{\mathrm{d} x} C=0                                                                                      C为常数

\LARGE \frac{\mathrm{d} }{\mathrm{d} x}x^{n}=nx^{n-1}                                                               此处n = 0,±1,±2...    

\LARGE \frac{\mathrm{d} }{\mathrm{d} x}e^{x}=e^{x}

\LARGE \frac{\mathrm{d} }{\mathrm{d} x}a^{x}=a^{x}lna

对数求导

\frac{\mathrm{d} }{\mathrm{d} x}lnx =\frac{1}{x}

\frac{\mathrm{d} }{\mathrm{d} x}x^{x} =x^{x}\cdot (1+lnx)

三角函数求导

\LARGE \frac{\mathrm{d} }{\mathrm{d} x} \sin x=\cos x

\LARGE \frac{\mathrm{d} }{\mathrm{d} x} \cos x= -\sin x

\LARGE \frac{\mathrm{d} }{\mathrm{d} x} \tan x = \sec^{2} x = 1 + \tan^{2} x

\LARGE \frac{\mathrm{d} }{\mathrm{d} x}\cot x=-\csc^{2} x

\LARGE \frac{\mathrm{d} }{\mathrm{d} x}\sec x=\sec x \tan x

\LARGE \frac{\mathrm{d} }{\mathrm{d} x}\csc x=-\csc x \cot x

\LARGE \frac{\mathrm{d} }{\mathrm{d} x}\arcsin x=\frac{1}{\sqrt{1-x^{2}}}

\LARGE \frac{\mathrm{d} }{\mathrm{d} x}\arccos x=-\frac{1}{\sqrt{1-x^{2}}}

\LARGE \frac{\mathrm{d} }{\mathrm{d} x}\arctan x=\frac{1}{1+x^{2}}

\LARGE \frac{\mathrm{d} }{\mathrm{d} x}\textrm{arccot} x=-\frac{1}{1+x^{2}}

\large {(u+v)}'={u}'+{v}'

\large {(uv)}'={u}'v+u{v}'

\large {(\frac{u}{v})}'=\frac{​{u}'v-u{v}'}{v^{2}}

\large {(ax)}'=a{x}'                                                                       a为常量

\large {((\sin x)^{a})}'={(\sin^{a}x)}'=a\sin^{a-1}x\cdot \cos x           a为常量

\large {(\sin ax)}'= a\cdot \cos ax                                                   a为常量

高阶微分/高阶导数写法示例

由于sin和cos函数的特殊性,不能将四阶导数等同于一阶导数

\large u(x) = \sin x

 \large u'=\frac{\mathrm{d} }{\mathrm{d} x}u=Du=\cos x 

 \large {u}''=({u}')'=(\frac{\mathrm{d} }{\mathrm{d} x})^{2}u=\frac{\mathrm{d}^{2} }{(\mathrm{d} x)^2}u= \frac{\mathrm{d}^{2}u }{\mathrm{d} x^2}=D^{2}u=-\sin x 

 \large {u}'''={(u'')}'=(\frac{\mathrm{d} }{\mathrm{d} x})^{3}u=\frac{\mathrm{d}^{3} }{(\mathrm{d} x)^3}u= \frac{\mathrm{d}^{3}u }{\mathrm{d} x^3}=D^{3}u=-\cos x

\large u''''=\sin x     

N阶求导示例

\large D^{n}x^{n}=(n(n-1)(n-2)...2\cdot 1)\cdot 1

其中n(n-1)...2·1部分称为n的阶乘,表示为n!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值