Kalman滤波(Part-1:信号模型基础)

Kalman Filters

Dynamical Signal Models

一阶高斯-马尔可夫过程(first-order Gauss-Markov process):描述采样点之间(相邻)的相关性:
s [ n ] = a s [ n − 1 ] + u [ n ] (1) s[n] = as[n-1] + u[n] \tag{1} s[n]=as[n1]+u[n](1)

其中 u [ n ] u[n] u[n]是高斯白噪声(White Gaussian Noise, WGN),方差为 σ u 2 \sigma^2_u σu2 s [ − 1 ] ∼ N ( μ s , σ s 2 ) s[-1]\sim \mathcal{N}(\mu_s,\sigma^2_s) s[1]N(μs,σs2) s [ − 1 ] s[-1] s[1] u [ n ] u[n] u[n]相互独立( ∀ n ≥ 0 \forall n \geq 0 n0)。该模型也常被称为dynamical model / state model

s [ n ] s[n] s[n]表示为初始条件 s [ − 1 ] s[-1] s[1]的函数形式:
s [ 0 ] = a s [ − 1 ] + u [ 0 ] s [ 1 ] = a s [ 0 ] + u [ 1 ] = a 2 s [ − 1 ] + a u [ 0 ] + u [ 1 ] etc. \begin{aligned} s[0] &= as[-1] + u[0] \\ s[1] &= as[0] + u[1] \\ &= a^2 s[-1] + au[0] + u[1] \\ & \text{etc.} \end{aligned} s[0]s[1]=as[1]+u[0]=as[0]+u[1]=a2s[1]+au[0]+u[1]etc.

一般地,我们有
s [ n ] = a n + 1 s [ − 1 ] + ∑ k = 0 n a k u [ n − k ] (2) s[n] = a^{n+1} s[-1] + \sum_{k=0}^n a^k u[n-k] \tag{2} s[n]=an+1s[1]+k=0naku[nk](2)

高斯随机过程(Gaussian random process):给定 k k k,对任意的采样点 { s [ n 1 ] , ⋯   , s [ n k ] } \{s[n_1],\cdots,s[n_k]\} {s[n1],,s[nk]} k k k维随机向量 s = [ s [ n 1 ] , ⋯   , s [ n k ] ] T \boldsymbol{s} = [s[n_1],\cdots,s[n_k]]^T s=[s[n1],,s[nk]]T的分布为高维的高斯PDF,就认为 s [ n ] s[n] s[n]是一个高斯随机过程。

因为随机变量 s [ − 1 ] s[-1] s[1] u [ ⋅ ] u[\cdot] u[]都是高斯随机变量并且相互独立,不难看出, s [ n ] s[n] s[n]是一个高斯随机过程。另外,
E [ s [ n ] ] = a n + 1 E [ s [ − 1 ] ] = a n + 1 μ s \mathbb{E} [s[n]] = a^{n+1} \mathbb{E}[s[-1]]=a^{n+1} \mu_s E[s[n]]=an+1E[s[1]]=an+1μs

采样点 s [ m ] s[m] s[m] s [ n ] s[n] s[n]之间的协方差为:
c s [ m , n ] = E [ ( s [ m ] − E [ s [ m ] ] ) ( s [ n ] − E [ s [ n ] ] ) ] = E [ ( a m + 1 ( s [ − 1 ] − μ s ) + ∑ k = 0 m a k u [ m − k ] ) ⋅ ( a n + 1 ( s [ − 1 ] − μ s ) + ∑ l = 0 n a l u [ n − l ] ) ] = a m + n + 2 σ s 2 + ∑ k = 0 m ∑ l = 0 n a k + l E [ u [ m − k ] u [ n − l ] ] \begin{aligned} c_s[m,n] &= \mathbb{E} \left [ (s[m] - \mathbb{E} [s[m]]) (s[n] - \mathbb{E} [s[n]]) \right] \\ &= \mathbb{E} \left [ \left( a^{m+1}(s[-1] - \mu_s) + \sum_{k=0}^m a^k u[m-k] \right ) \cdot \left( a^{n+1}(s[-1] - \mu_s) + \sum_{l=0}^n a^l u[n-l] \right ) \right] \\ &= a^{m+n+2} \sigma_s^2 + \sum_{k=0}^m \sum_{l=0}^n a^{k+l} \mathbb{E} [u[m-k] u [n-l]] \end{aligned} cs[m,n]=E[(s[m]E[s[m]])(s[n]E[s[n]])]=E[(am+1(s[1]μs)+k=0maku[mk])(an+1(s[1]μs)+l=0nalu[nl])]=am+n+2σs2+k=0ml=0nak+lE[u[mk]u[nl]]

但是
E [ u [ m − k ] u [ n − l ] ] = σ u 2 δ [ k − ( l + m − n ) ] \mathbb{E} [u[m-k] u [n-l]] = \sigma^2_u \delta [k - (l+m-n)] E[u[mk]u[nl]]=σu2δ[k(l+mn)]

因此,当 m ≥ n m \geq n mn
c s [ m , n ] = a m + n + 2 σ s 2 + σ u 2 a m − n ∑ l = 0 n a 2 l \begin{aligned} c_s[m,n] &= a^{m+n+2} \sigma_s^2 + \sigma^2_u a^{m-n} \sum_{l=0}^n a^{2l} \end{aligned} cs[m,n]=am+n+2σs2+σu2amnl=0na2l

m < n m < n m<n时, c s [ m , n ] = c s [ n , m ] c_s[m,n] = c_s[n,m] cs[m,n]=cs[n,m]。基于上述协方差,可以得到方差为
var [ s [ n ] ] = c s [ n , n ] = a 2 n + 2 σ s 2 + σ u 2 ∑ l = 0 n a 2 l \begin{aligned} \text{var}[s[n]] &= c_s[n,n] \\ &= a^{2n+2} \sigma^2_s + \sigma^2_u \sum_{l=0}^n a^{2l} \end{aligned} var[s[n]]=cs[n,n]=a2n+2σs2+σu2l=0na2l

显然,因为 E [ s [ n ] ] = a n + 1 μ s \mathbb{E} [s[n]] = a^{n+1} \mu_s E[s[n]]=an+1μs n n n相关,且协方差与 m , n m,n m,n相关,因此 s [ n ] s[n] s[n]不是一个广义平稳过程(Wide-sense stationary, WSS)。然而,当 n → ∞ n \rightarrow \infty n
E [ s [ n ] ] → 0 c s [ m , n ] → σ u 2 a m − n 1 − a 2 \begin{aligned} \mathbb{E} [s[n]] & \rightarrow 0 \\ c_s[m,n] &\rightarrow \frac{\sigma_u^2 a^{m-n}}{1 - a^2} \end{aligned} E[s[n]]cs[m,n]01a2σu2amn

因为 ∣ a ∣ < 1 |a| < 1 a<1(该条件对于整个过程的稳定是必要的,否则,均值和方差将会随着 n n n呈指数形式增长)

因为高斯-马尔可夫过程的特殊形式,其均值和方差也可以被迭代地表征(式(3,4)被称为均值与方差传播公式)
E [ s [ n ] ] = a E [ s [ n − 1 ] ] (3) \mathbb{E} [s[n]] = a \mathbb{E} [s[n-1]] \tag{3} E[s[n]]=aE[s[n1]](3)

var [ s [ n ] ] = E [ ( s [ n ] − E [ s [ n ] ] 2 ) 2 ] = E [ ( a s [ n − 1 ] + u [ n ] − a E [ s [ n − 1 ] ] ) 2 ] = a 2 var [ s [ n − 1 ] ] + σ u 2 (4) \begin{aligned} \text{var}[s[n]] &= \mathbb{E} \left [ (s[n] - \mathbb{E}[s[n]]^2)^2 \right] \\ &= \mathbb{E} \left [ {\left ( as[n-1] + u[n] - a\mathbb{E}[s[n-1]] \right)}^2 \right] \\ &= a^2 \text{var}[s[n-1]] + \sigma^2_u \tag{{4}} \end{aligned} var[s[n]]=E[(s[n]E[s[n]]2)2]=E[(as[n1]+u[n]aE[s[n1]])2]=a2var[s[n1]]+σu2(4)

其中我们使用了 E [ u [ n ] s [ n − 1 ] ] = 0 \mathbb{E}[u[n]s[n-1]] = 0 E[u[n]s[n1]]=0,这是因为 s [ n − 1 ] s[n-1] s[n1]只取决于 { s [ − 1 ] , u [ 0 ] , ⋯   , u [ n − 1 ] } \{s[-1], u[0], \cdots, u[n-1]\} {s[1],u[0],,u[n1]},且这些随机变量独立于 u [ n ] u[n] u[n]。注意到,在式(4)中,第一项 a s [ n − 1 ] as[n-1] as[n1]会造成方差减小,第二项的积累 σ u 2 \sigma^2_u σu2会造成方差增大,在达到稳态(steady state)后,或者 n → ∞ n\rightarrow\infty n,两项的作用相互平衡,收敛为 σ u 2 / ( 1 − a 2 ) \sigma^2_u / (1-a^2) σu2/(1a2).

考虑一个 p p p阶的高斯-马尔可夫过程
s [ n ] = − ∑ k = 1 p a [ k ] s [ n − k ] + u [ n ] (5) s[n] = - \sum_{k=1}^p a[k] s[n-k] + u[n] \tag{5} s[n]=k=1pa[k]s[nk]+u[n](5)

因为 s [ n ] s[n] s[n]取决于前 p p p个采样点,所以均值和方差传播式变得更加复杂。为了拓展之前的结论,我们指定 { s [ n − 1 ] , s [ n − 2 ] , ⋯   , s [ n − p ] } \{s[n-1],s[n-2],\cdots,s[n-p]\} {s[n1],s[n2],,s[np]}为采样时刻 n n n系统状态(system state),我们定义状态向量
s [ n − 1 ] = [ s [ n − p ] s [ n − p + 1 ] ⋮ s [ n − 1 ] ] (6) \boldsymbol{s}\left[ n-1 \right] =\left[ \begin{array}{c} \begin{array}{c} s\left[ n-p \right]\\ s\left[ n-p+1 \right]\\ \end{array}\\ \vdots\\ s\left[ n-1 \right]\\ \end{array} \right] \tag{6} s[n1]=s[np]s[np+1]s[n1](6)

我们可以把式(10)写为
[ s [ n − p + 1 ] s [ n − p + 2 ] ⋮ s [ n − 1 ] s [ n ] ] = [ 0 1 0 ⋯ 0 0 0 1 ⋯ 0 0 0 0 ⋯ 0 ⋮ ⋮ ⋮ ⋱ ⋮ − a [ p ] − a [ p − 1 ] − a [ p − 2 ] ⋯ − a [ 1 ] ] ⏟ A [ s [ n − p ] s [ n − p + 1 ] ⋮ s [ n − 2 ] s [ n − 1 ] ] + [ 0 0 ⋮ 1 ] ⏟ B u [ n ] \left[ \begin{array}{c} \begin{array}{c} s\left[ n-p+1 \right]\\ s\left[ n-p+2 \right]\\ \end{array}\\ \vdots\\ \begin{array}{c} s\left[ n-1 \right]\\ s\left[ n \right]\\ \end{array}\\ \end{array} \right] =\mathop {\underbrace{\left[ \begin{matrix}{} 0& 1& 0& \cdots& 0\\ 0& 0& 1& \cdots& 0\\ 0& 0& 0& \cdots& 0\\ \vdots& \vdots& \vdots& \ddots& \vdots\\ -a\left[ p \right]& -a\left[ p-1 \right]& -a\left[ p-2 \right]& \cdots& -a\left[ 1 \right]\\ \end{matrix} \right] }} \limits_{\boldsymbol{A}}\left[ \begin{array}{c} \begin{array}{c} s\left[ n-p \right]\\ s\left[ n-p+1 \right]\\ \end{array}\\ \vdots\\ \begin{array}{c} s\left[ n-2 \right]\\ s\left[ n-1 \right]\\ \end{array}\\ \end{array} \right] +\mathop {\underbrace{\left[ \begin{array}{c} 0\\ 0\\ \vdots\\ 1\\ \end{array} \right] }} \limits_{\boldsymbol{B}}u\left[ n \right] s[np+1]s[np+2]s[n1]s[n]=A 000a[p]100a[p1]010a[p2]000a[1]s[np]s[np+1]s[n2]s[n1]+B 001u[n]

其中的前 ( p − 1 ) (p-1) (p1)个方程为方阵,根据定义,将上式写为状态向量的形式:
s [ n ] = A s [ n − 1 ] + B u [ n ] (7) \boldsymbol s[n] = \boldsymbol A \boldsymbol s[n-1] + \boldsymbol B \boldsymbol u[n] \tag{7} s[n]=As[n1]+Bu[n](7)

其中 A \boldsymbol{ A} A是一个 p × p p \times p p×p的非奇异矩阵(称为状态转移矩阵:state transition matrix), B \boldsymbol{ B} B是一个 p × 1 p \times 1 p×1的向量。式(7)的形式被称为向量高斯-马尔可夫模型(Vector Gauss-Markov Model)。更一般的模型可表示为,
s [ n ] = A s [ n − 1 ] + B u [ n ] (8) \boldsymbol s[n] = \boldsymbol A \boldsymbol s[n-1] + \boldsymbol B \boldsymbol u[n] \tag{8} s[n]=As[n1]+Bu[n](8)

其中 A , B \boldsymbol{A,B} A,B都是固定的矩阵, A \boldsymbol{ A} A的维度为 p × p p \times p p×p B \boldsymbol{B} B的维度为 p × r p \times r p×r s [ n ] \boldsymbol{ s}[n] s[n]是一个 p × 1 p \times 1 p×1的信号向量, u [ n ] \boldsymbol{ u}[n] u[n]是一个驱动噪声矢量(driving noise vector)。我们称式(8)为状态模型(state model),该模型的统计假设有:

  • 输入的 u [ n ] \boldsymbol{u}[n] u[n]是高斯白噪声,q向量,即 u [ n ] \boldsymbol{ u}[n] u[n]是一个不相关的联合高斯分布的序列,且 E [ u [ n ] ] = 0 \mathbb{E}[\boldsymbol{u}[n]] = \boldsymbol{ 0} E[u[n]]=0
    E [ u [ m ] u T [ n ] ] = 0 ,      m ≠ n \mathbb{E}[\boldsymbol u[m] \boldsymbol u^T[n]] = \boldsymbol{ 0}, \ \ \ \ m\neq n E[u[m]uT[n]]=0,    m=n u [ n ] \boldsymbol{u}[n] u[n]的协方差为:
    E [ u [ n ] u T [ n ] ] = Q \mathbb{E}[\boldsymbol u[n] \boldsymbol u^T[n]] = \boldsymbol{Q} E[u[n]uT[n]]=Q 其中 Q \boldsymbol{ Q} Q 是一个 r × r r \times r r×r的正定矩阵。

  • 初始状态 s [ − 1 ] \boldsymbol{ s}[-1] s[1]是随机向量: s [ − 1 ] ∼ N ( μ s , C s ) \boldsymbol{s}[-1] \sim \mathcal{N}(\boldsymbol{\mu}_s, \boldsymbol{C}_s) s[1]N(μs,Cs)独立于 u [ n ] , ∀ n ≥ 0 \boldsymbol{u}[n], \forall n \geq 0 u[n],n0

我们进一步推导向量高斯-马尔可夫模型的统计特征(标量模型的扩展),依据式(8),
s [ 0 ] = A s [ − 1 ] + B u [ 0 ] s [ 1 ] = A s [ 0 ] + B u [ 1 ] = A 2 s [ − 1 ] + A B u [ 0 ] + B u [ 1 ] etc. \begin{aligned} \boldsymbol s [0] & = \boldsymbol A \boldsymbol s [-1] + \boldsymbol{ B}\boldsymbol u [0] \\ \boldsymbol s [1] & = \boldsymbol A \boldsymbol s [0] + \boldsymbol{ B}\boldsymbol u [1] \\ &= \boldsymbol A^2 \boldsymbol s [-1] + \boldsymbol{A B}\boldsymbol u [0] + \boldsymbol{ B}\boldsymbol u [1] \\ & \text{etc.} \end{aligned} s[0]s[1]=As[1]+Bu[0]=As[0]+Bu[1]=A2s[1]+ABu[0]+Bu[1]etc.

一般地,我们可以推广得到
s [ n ] = A n + 1 s [ − 1 ] + ∑ k = 0 n A k B u [ n − k ] \boldsymbol s[n] = \boldsymbol A^{n+1} \boldsymbol s[-1] + \sum_{k=0}^n \boldsymbol A^k \boldsymbol B \boldsymbol u[n-k] s[n]=An+1s[1]+k=0nAkBu[nk]

其中 A 0 = I \boldsymbol{A}^0=\boldsymbol{I} A0=I,可以看出, s [ n ] \boldsymbol{ s}[n] s[n]初始条件 s [ − 1 ] \boldsymbol{s}[-1] s[1] u [ ⋅ ] \boldsymbol{u}[\cdot] u[]的线性组合,因此, s [ n ] \boldsymbol{s}[n] s[n]是一个高斯随机过程,那么就只需要决定其均值和方差。
E [ s [ n ] ] = A n + 1 E [ s [ − 1 ] ] = A n + 1 μ s (9) \mathbb{E}[\boldsymbol s[n]] = \boldsymbol A^{n+1} \mathbb{E}[\boldsymbol s[-1]] = \boldsymbol A^{n+1} \boldsymbol \mu_s \tag{9} E[s[n]]=An+1E[s[1]]=An+1μs(9)

其协方差:
C s [ m , n ] = E [ ( s [ m ] − E [ s [ m ] ] ) ( s [ n ] − E [ s [ n ] ] ) T ] = E [ ( A m + 1 ( s [ − 1 ] − μ s ) + ∑ k = 0 m A k B u [ m − k ] ) ⋅ ( A n + 1 ( s [ − 1 ] − μ s ) + ∑ l = 0 n A l B u [ n − l ] ) T ] = A m + 1 C s A n + 1 T + ∑ k = 0 m ∑ l = 0 n A k B E [ u [ m − k ] u T [ n − l ] ] B T A l T \begin{aligned} \boldsymbol C_s[m,n] &= \mathbb{E} \left [ {\left( \boldsymbol s[m] - \mathbb{E}[\boldsymbol s[m]] \right)} {\left( \boldsymbol s[n] - \mathbb{E}[\boldsymbol s[n]] \right)}^T \right] \\ & = \mathbb{E} \left [ \left( \boldsymbol A^{m+1} (\boldsymbol s[-1] - \boldsymbol \mu_s) + \sum_{k=0}^m \boldsymbol A^k \boldsymbol B \boldsymbol u[m-k] \right) \cdot {\left( \boldsymbol A^{n+1} (\boldsymbol s[-1] - \boldsymbol \mu_s) + \sum_{l=0}^n \boldsymbol A^l \boldsymbol B \boldsymbol u[n-l] \right)}^T \right] \\ &= \boldsymbol A^{m+1} \boldsymbol C_s \boldsymbol A^{{n+1}^T} + \sum_{k=0}^m \sum_{l=0}^n \boldsymbol A^k \boldsymbol B \mathbb{E} \left [ \boldsymbol{ u}[m-k] \boldsymbol{u}^T[n-l]\right] \boldsymbol B^T \boldsymbol A^{l^T} \end{aligned} Cs[m,n]=E[(s[m]E[s[m]])(s[n]E[s[n]])T]=E(Am+1(s[1]μs)+k=0mAkBu[mk])(An+1(s[1]μs)+l=0nAlBu[nl])T=Am+1CsAn+1T+k=0ml=0nAkBE[u[mk]uT[nl]]BTAlT

注意到,
E [ u [ m − k ] u T [ n − l ] ] = Q δ [ l − ( n − m + k ) ] \mathbb{E} \left [ \boldsymbol{ u}[m-k] \boldsymbol{u}^T[n-l]\right] = \boldsymbol Q \delta [l-(n-m+k)] E[u[mk]uT[nl]]=Qδ[l(nm+k)]

因此,当 m ≥ n m \geq n mn时,
C s [ m , n ] = A m + 1 C s A n + 1 T + ∑ l = 0 n A l + m − n B Q B T A l T (10) \boldsymbol C_s[m,n] = \boldsymbol A^{m+1} \boldsymbol C_s \boldsymbol A^{{n+1}^T} + \sum_{l=0}^n \boldsymbol A^{l+m-n} \boldsymbol {BQB}^T \boldsymbol A^{l^T} \tag{{10}} Cs[m,n]=Am+1CsAn+1T+l=0nAl+mnBQBTAlT(10)

m < n m<n m<n时,
C s [ m , n ] = C s T [ n , m ] \boldsymbol C_s[m,n] = \boldsymbol C_s^T[n,m] Cs[m,n]=CsT[n,m]

那么协方差矩阵可以表示为:
C [ n ] = C s [ n , n ] = A n + 1 C s A n + 1 T + ∑ k = 0 n A k B Q B T A k T (11) \begin{aligned} \boldsymbol C[n] &= \boldsymbol C_s[n,n] \\ &= \boldsymbol A^{n+1} \boldsymbol C_s \boldsymbol A^{{n+1}^T} + \sum_{k=0}^n \boldsymbol A^k \boldsymbol{BQB}^T \boldsymbol A^{k^T} \tag{11} \end{aligned} C[n]=Cs[n,n]=An+1CsAn+1T+k=0nAkBQBTAkT(11)

期望和方差的传播方程可以写为:
E [ s [ n ] ] = A E [ s [ n − 1 ] ] (12) \boldsymbol E[\boldsymbol s[n]] = \boldsymbol A \boldsymbol E[\boldsymbol s [n-1]] \tag{12} E[s[n]]=AE[s[n1]](12)

C [ n ] = A C [ n − 1 ] A T + B Q B T \boldsymbol C[n] = \boldsymbol A \boldsymbol C[n-1] \boldsymbol A^T + \boldsymbol {BQB}^T C[n]=AC[n1]AT+BQBT

注意,只有当 A \boldsymbol{A} A的特征值幅度都小于1,才是一个稳定的过程(steady process)。

n → ∞ n \rightarrow \infty n时,
E [ s [ n ] ] = A n + 1 μ s → 0 \mathbb{E} [\boldsymbol s [n]] = \boldsymbol A^{n+1} \boldsymbol \mu_s \rightarrow \boldsymbol 0 E[s[n]]=An+1μs0

A n + 1 C s A n + 1 T → 0 \boldsymbol A^{n+1} \boldsymbol C_s \boldsymbol A^{{n+1}^T} \rightarrow 0 An+1CsAn+1T0

因此,
C [ n ] → C = ∑ k = 0 ∞ A k B Q B T A k T (13) \boldsymbol C[n] \rightarrow \boldsymbol C = \sum_{k=0}^{\infty} \boldsymbol A^k \boldsymbol {BQB}^T \boldsymbol A^{k^T} \tag{13} C[n]C=k=0AkBQBTAkT(13)

另外,当 n → ∞ n\rightarrow\infty n C [ n − 1 ] = C [ n ] \boldsymbol{C}[n-1]=\boldsymbol{C}[n] C[n1]=C[n],那么稳态的协方差矩阵为方程(14)的解:
C = A C A T + B Q B T (14) \boldsymbol C = \boldsymbol {ACA}^T + \boldsymbol {BQB}^T \tag{14} C=ACAT+BQBT(14)

该方程被称为Lyapunov equation.

将上述模型和定理总结如下:

定理-1:向量高斯马尔可夫模型(Vector Gauss-Markov Model):对一个 p × 1 p \times 1 p×1的信号向量 s [ n ] \boldsymbol{ s}[n] s[n],其高斯-马尔可夫模型为:
s [ n ] = A s [ n − 1 ] + B u [ n ] ,      n ≥ 0 (15) \boldsymbol s[n] = \boldsymbol A \boldsymbol s[n-1] + \boldsymbol B \boldsymbol u [n], \ \ \ \ n \geq 0 \tag{15} s[n]=As[n1]+Bu[n],    n0(15)

A ( p × p ) \boldsymbol{A} (p \times p) A(p×p) B ( p × r ) \boldsymbol{ B} (p \times r) B(p×r)已知,假设 A \boldsymbol A A的特征值幅度小于1, u [ n ] ( r × 1 ) \boldsymbol{u}[n] (r \times 1) u[n](r×1)为高斯白噪声向量, u [ n ] ∼ N ( 0 , Q ) \boldsymbol{u}[n] \sim \mathcal{N}(\boldsymbol{0},\boldsymbol{Q}) u[n]N(0,Q) { u [ n ] } \{\boldsymbol{u}[n]\} {u[n]}之间相互独立。初始条件 s [ − 1 ] ∼ N ( μ s , C s ) \boldsymbol{s}[-1] \sim \mathcal N(\boldsymbol{ \mu}_s,\boldsymbol C_s) s[1]N(μs,Cs),独立于 { u [ n ] } \{\boldsymbol{u}[n]\} {u[n]},那么该信号过程是高斯的,且其均值为
E [ s [ n ] ] = A n + 1 μ s (16) \mathbb{E} [\boldsymbol s [n]] = \boldsymbol A^{n+1} \boldsymbol \mu_s \tag{16} E[s[n]]=An+1μs(16)

m ≥ n m \geq n mn时,协方差为
C s [ m , n ] = A m + 1 C s A n + 1 T + ∑ l = 0 n A l + m − n B Q B T A l T (17) \boldsymbol C_s[m,n] = \boldsymbol A^{m+1} \boldsymbol C_s \boldsymbol A^{{n+1}^T} + \sum_{l=0}^n \boldsymbol A^{l+m-n} \boldsymbol {BQB}^T \boldsymbol A^{l^T} \tag{{17}} Cs[m,n]=Am+1CsAn+1T+l=0nAl+mnBQBTAlT(17)

m < n m<n m<n时,
C s [ m , n ] = C s T [ n , m ] \boldsymbol C_s[m,n] = \boldsymbol C_s^T[n,m] Cs[m,n]=CsT[n,m]

那么协方差矩阵可以表示为:
C [ n ] = C s [ n , n ] = A n + 1 C s A n + 1 T + ∑ k = 0 n A k B Q B T A k T (18) \begin{aligned} \boldsymbol C[n] &= \boldsymbol C_s[n,n] \\ &= \boldsymbol A^{n+1} \boldsymbol C_s \boldsymbol A^{{n+1}^T} + \sum_{k=0}^n \boldsymbol A^k \boldsymbol{BQB}^T \boldsymbol A^{k^T} \tag{18} \end{aligned} C[n]=Cs[n,n]=An+1CsAn+1T+k=0nAkBQBTAkT(18)

期望和方差的传播方程可以写为:
E [ s [ n ] ] = A E [ s [ n − 1 ] ] (19) \boldsymbol E[\boldsymbol s[n]] = \boldsymbol A \boldsymbol E[\boldsymbol s [n-1]] \tag{19} E[s[n]]=AE[s[n1]](19)

C [ n ] = A C [ n − 1 ] A T + B Q B T (20) \boldsymbol C[n] = \boldsymbol A \boldsymbol C[n-1] \boldsymbol A^T + \boldsymbol {BQB}^T \tag{20} C[n]=AC[n1]AT+BQBT(20)

  • 0
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值