巴特沃斯滤波器(英语:Butterworth Filter),也被称作最大平坦滤波器,是一种通频带之频率响应曲线平坦无纹波的信号处理滤波器,最先由英国工程师、物理学家史蒂芬·巴特沃斯提出。
传递函数求解
巴特沃斯滤波器对不同频率下的增益进行了设计, n n n阶巴特沃斯滤波器的增益可以表示为(截止频率 ω c \omega_c ωc):
∣ H n ( j ω ) ∣ = 1 1 + ( ω ω c ) 2 n ⇔ ∣ H n ( j ω ) ∣ 2 = 1 1 + ( ω ω c ) 2 n \left| {
{H_n}\left( {j\omega } \right)} \right| = \frac{1}{
{\sqrt {1 + {
{\left( {\frac{\omega }{
{
{\omega _c}}}} \right)}^{2n}}} }}\Leftrightarrow {\left| {
{H_n}\left( {j\omega } \right)} \right|^2} = \frac{1}{
{1 + {
{\left( {\frac{\omega }{
{
{\omega _c}}}} \right)}^{2n}}}} ∣Hn(jω)∣=1+(ωcω)2n1⇔∣Hn(jω)∣2=1+(ωcω)2n1
上述表达式仅对幅频特性进行了描述,我们更希望得到传递函数形式的表达式,从而兼具幅频特性和相频特性,考虑到 H n ( j ω ) ‾ = H n ( − j ω ) \overline {
{H_n}\left( {j\omega } \right)} = {H_n}\left( { - j\omega } \right) Hn(jω)=Hn(−jω),于是有:
{ H n ( s ) H n ( − s ) = H n ( j ω ) H n ( − j ω ) = H n ( j ω ) H n ( j ω ) ‾ = ∣ H n ( j ω ) ∣ 2 = 1 1 + ( ω ω c ) 2 n = 1 1 + ( j ω j ω c ) 2 n = 1 1 + ( s j ω c ) 2 n = 1 1 + ( − s 2 ω c 2 ) n \left\{ \begin{aligned} H_n\left( s \right)H_n\left( { - s} \right) &= {H_n}\left( {j\omega } \right){H_n}\left( { - j\omega } \right) = {H_n}\left( {j\omega } \right)\overline {
{H_n}\left( {j\omega } \right)} = {\left| {
{H_n}\left( {j\omega } \right)} \right|^2}\\ &= \frac{1}{
{1 + {
{\left( {\frac{\omega }{
{
{\omega _c}}}} \right)}^{2n}}}} = \frac{1}{
{1 + {
{\left( {\frac{
{j\omega }}{
{j{\omega _c}}}} \right)}^{2n}}}} = \frac{1}{
{1 + {
{\left( {\frac{s}{
{j{\omega _c}}}} \right)}^{2n}}}}\\ &= \frac{1}{
{1 + {
{\left( { - \frac{
{
{s^2}}}{
{
{\omega _c}^2}}} \right)}^n}}} \end{aligned} \right. ⎩
⎨
⎧Hn(s)Hn(−s)=Hn(jω)Hn(−jω)=Hn(jω)Hn(jω)=∣Hn(jω)∣2=1+(ωcω)2n1=1+(jωcjω)2n1=1+(jωcs)2n1=1+(−ωc2s2)n1
进一步求解 H n ( s ) H_n(s) Hn(s)的具体表达式,假设 H n ( s ) H_n(s) Hn(s)的 n n n个极点分别为 s 1 , s 2 , . . . , s n s_1,s_2,...,s_n s1,s2,...,sn,则 H n ( − s ) H_n(-s) Hn(−s)的 n n n个极点为相应的负对称点, − s 1 = s 1 e j π , − s 2 = s 2 e j π , . . . , − s n = s n e j π - {s_1} = {s_1}{e^{j\pi }}, - {s_2} = {s_2}{e^{j\pi }},..., - {s_n} = {s_n}{e^{j\pi }} −s1=s1ejπ,−s2=s2ejπ,...,−sn=snejπ。一般地, H n ( s ) H_n(s) Hn(s)和 H n ( − s ) H_n(-s) Hn(−s)可以写作:
{ H n ( s ) = 1 ( 1 − s s 1 ) ( 1 − s s 2 ) ⋅ ⋅ ⋅ ( 1 − s s n ) H n ( − s ) = 1 ( 1 − s s 1 e j π ) ( 1 − s s 2 e j π ) ⋅ ⋅ ⋅ ( 1 − s s n e j π ) \left\{ \begin{aligned} {H_n}\left( s \right) &= \frac{1}{
{\left( {1 - \frac{s}{
{
{s_1}}}} \right)\left( {1 - \frac{s}{
{
{s_2}}}} \right) \cdot \cdot \cdot \left( {1 - \frac{s}{
{
{s_n}}}} \right)}}\\ {H_n}\left( { - s} \right) &= \frac{1}{
{\left( {1 - \frac{s}{
{
{s_1}{e^{j\pi }}}}} \right)\left( {1 - \frac{s}{
{
{s_2}{e^{j\pi }}}}} \right) \cdot \cdot \cdot \left( {1 - \frac{s}{
{
{s_n}{e^{j\pi }}}}} \right)}} \end{aligned} \right. ⎩
⎨
⎧Hn(s)Hn(−s)=(1−s1s)(1−s2s)⋅⋅⋅(1−sns)1