巴特沃斯滤波器,原理与Matlab实现

  巴特沃斯滤波器(英语:Butterworth Filter),也被称作最大平坦滤波器,是一种通频带之频率响应曲线平坦无纹波的信号处理滤波器,最先由英国工程师、物理学家史蒂芬·巴特沃斯提出。

传递函数求解

  巴特沃斯滤波器对不同频率下的增益进行了设计, n n n阶巴特沃斯滤波器的增益可以表示为(截止频率 ω c \omega_c ωc):
∣ H n ( j ω ) ∣ = 1 1 + ( ω ω c ) 2 n ⇔ ∣ H n ( j ω ) ∣ 2 = 1 1 + ( ω ω c ) 2 n \left| { {H_n}\left( {j\omega } \right)} \right| = \frac{1}{ {\sqrt {1 + { {\left( {\frac{\omega }{ { {\omega _c}}}} \right)}^{2n}}} }}\Leftrightarrow {\left| { {H_n}\left( {j\omega } \right)} \right|^2} = \frac{1}{ {1 + { {\left( {\frac{\omega }{ { {\omega _c}}}} \right)}^{2n}}}} Hn()=1+(ωcω)2n 1Hn()2=1+(ωcω)2n1
  上述表达式仅对幅频特性进行了描述,我们更希望得到传递函数形式的表达式,从而兼具幅频特性和相频特性,考虑到 H n ( j ω ) ‾ = H n ( − j ω ) \overline { {H_n}\left( {j\omega } \right)} = {H_n}\left( { - j\omega } \right) Hn()=Hn(),于是有:
{ H n ( s ) H n ( − s ) = H n ( j ω ) H n ( − j ω ) = H n ( j ω ) H n ( j ω ) ‾ = ∣ H n ( j ω ) ∣ 2 = 1 1 + ( ω ω c ) 2 n = 1 1 + ( j ω j ω c ) 2 n = 1 1 + ( s j ω c ) 2 n = 1 1 + ( − s 2 ω c 2 ) n \left\{ \begin{aligned} H_n\left( s \right)H_n\left( { - s} \right) &= {H_n}\left( {j\omega } \right){H_n}\left( { - j\omega } \right) = {H_n}\left( {j\omega } \right)\overline { {H_n}\left( {j\omega } \right)} = {\left| { {H_n}\left( {j\omega } \right)} \right|^2}\\ &= \frac{1}{ {1 + { {\left( {\frac{\omega }{ { {\omega _c}}}} \right)}^{2n}}}} = \frac{1}{ {1 + { {\left( {\frac{ {j\omega }}{ {j{\omega _c}}}} \right)}^{2n}}}} = \frac{1}{ {1 + { {\left( {\frac{s}{ {j{\omega _c}}}} \right)}^{2n}}}}\\ &= \frac{1}{ {1 + { {\left( { - \frac{ { {s^2}}}{ { {\omega _c}^2}}} \right)}^n}}} \end{aligned} \right. Hn(s)Hn(s)=Hn()Hn()=Hn()Hn()=Hn()2=1+(ωcω)2n1=1+(jωc)2n1=1+(jωcs)2n1=1+(ωc2s2)n1
  进一步求解 H n ( s ) H_n(s) Hn(s)的具体表达式,假设 H n ( s ) H_n(s) Hn(s) n n n个极点分别为 s 1 , s 2 , . . . , s n s_1,s_2,...,s_n s1,s2,...,sn,则 H n ( − s ) H_n(-s) Hn(s) n n n个极点为相应的负对称点, − s 1 = s 1 e j π , − s 2 = s 2 e j π , . . . , − s n = s n e j π - {s_1} = {s_1}{e^{j\pi }}, - {s_2} = {s_2}{e^{j\pi }},..., - {s_n} = {s_n}{e^{j\pi }} s1=s1e,s2=s2e,...,sn=sne。一般地, H n ( s ) H_n(s) Hn(s) H n ( − s ) H_n(-s) Hn(s)可以写作:
{ H n ( s ) = 1 ( 1 − s s 1 ) ( 1 − s s 2 ) ⋅ ⋅ ⋅ ( 1 − s s n ) H n ( − s ) = 1 ( 1 − s s 1 e j π ) ( 1 − s s 2 e j π ) ⋅ ⋅ ⋅ ( 1 − s s n e j π ) \left\{ \begin{aligned} {H_n}\left( s \right) &= \frac{1}{ {\left( {1 - \frac{s}{ { {s_1}}}} \right)\left( {1 - \frac{s}{ { {s_2}}}} \right) \cdot \cdot \cdot \left( {1 - \frac{s}{ { {s_n}}}} \right)}}\\ {H_n}\left( { - s} \right) &= \frac{1}{ {\left( {1 - \frac{s}{ { {s_1}{e^{j\pi }}}}} \right)\left( {1 - \frac{s}{ { {s_2}{e^{j\pi }}}}} \right) \cdot \cdot \cdot \left( {1 - \frac{s}{ { {s_n}{e^{j\pi }}}}} \right)}} \end{aligned} \right. Hn(s)Hn(s)=(1s1s)(1s2s)(1sns)1

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值