解决Pytorch显存碎片化导致的CUDA:Out Of Memory问题

问题描述:每完成一次训练(完成任意一个epoch),开始下一个epoch时出现OOM

问题呈现:torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 460.00 MiB. GPU has a total capacity of 79.33 GiB of which 248.00 MiB is free.

Including non-PyTorch memory, this process has 79.06 GiB memory in use.Of the allocated memory 76.12 GiB is allocated by PyTorch,and 1.08 GiB is reserved by PyTorch but unallocated.

If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. 

解决方案有以下几种:

1.手动清理GPU内存:

在PyTorch中,使用torch.cuda.empty_cache().来清理GPU内存缓存,虽然这不会释放GPU中被PyTorch占用的内存,但可以减少PyTorch内存的碎片。

每次forward()之后添加 :torch.cuda.empty_cache()

2.使用max_split_size_mb来避免内存碎片

在训练脚本中设置PYTORHC_CUDA_ALLOC_CONF环境变量来控制内存分配行为,避免内存碎片问题;

具体操作以下:

python中:

       import os

       os.environ['PYTORCH_CUDA_ALLOC_CONF]='expandable_segments:true',

       os.environ['PYTORCH_CUDA_ALLOC_CONF]='max_split_size_mb:128',其中128可以按照本机现有的GPU显存的大小来确定(调大调小)

shell中:

       export  PYTORCH_CUDA_ALLOC_CONF]=expandable_segments:true

       set PYTORCH_CUDA_ALLOC_CONF=max_split_size_mb:128

3.减少batch size

4.设置ddp_timeout和NCCL_TIMEOUT为:30000(根据数据的大小,30-30000ms)

<think>好的,我现在需要解决用户在PyTorch中遇到的CUDA内存不足的问题。用户提到尝试分配11.16 GiB显存,并且提到了PYTORCH_CUDA_ALLOC_CONF和expandable_segments参数。首先,我得回忆一下PyTorch的内存管理机制,以及常见的解决方法。 首先,用户遇到的错误信息显示显存不足,可能的原因有很多。比如,模型太大、批量大小过大、内存泄漏,或者内存碎片化。根据提供的引用内容,特别是引用1到4,用户可能已经尝试过一些方法,比如减少批量大小、释放内存,但问题仍然存在。现在用户想通过设置PYTORCH_CUDA_ALLOC_CONF环境变量中的expandable_segments为True来避免碎片化。 接下来,我需要整理解决这个问题的步骤。首先,应该检查当前显存的使用情况,使用torch.cuda.memory_summary()来查看哪些部分占用了显存。然后,考虑减少批量大小,这是最直接的方法,因为较大的批量会占用更多显存。此外,用户可能在训练循环中没有及时释放中间变量,所以需要在每个batch后del这些变量,并调用torch.cuda.empty_cache(),但要注意,empty_cache()并不会释放被张量占用的内存,只是释放缓存,所以可能需要更早地释放不需要的变量。 然后,模型本身的优化,比如使用更小的模型,或者应用梯度检查点技术(gradient checkpointing),这样可以在训练时用计算换显存。混合精度训练也是一个选项,使用torch.cuda.amp可以减少显存占用,同时可能加速训练。 关于PYTORCH_CUDA_ALLOC_CONF的设置,用户提到expandable_segments=True。根据PyTorch文档,这个参数允许CUDA分配器创建可扩展的段,减少内存碎片。设置方法是通过环境变量,比如在代码开始时设置os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'expandable_segments:True'。但需要注意,这个选项可能在某些情况下导致性能下降,所以需要测试。 此外,max_split_size_mb参数可以调整,限制内存块的分割大小,减少碎片。例如设置为较大的值,如512,可以允许更大的连续内存块,但需要根据具体情况调整。 还需要检查是否有不必要的数据留在GPU上,比如在训练过程中创建的临时张量没有及时释放。使用nvidia-smi命令监控显存使用情况,看看是否有异常的内存增长,这可能意味着内存泄漏。 如果所有方法都试过了,显存还是不够,可能需要考虑模型并行或数据并行,将模型分布到多个GPU上,或者使用更强大的硬件。 现在,根据这些思路,我应该分步骤详细说明解决方法,确保用户能够逐步操作。同时,生成相关的问题,帮助用户进一步理解其他可能的解决方案或相关的问题。</think>### PyTorch CUDA内存不足问题解决方法 #### 1. 基础检查与显存监控 - **查看显存占用**:使用 `torch.cuda.memory_summary()` 或 `nvidia-smi` 监控显存使用情况,识别内存泄漏或异常占用。 - **示例代码**: ```python import torch print(torch.cuda.memory_summary()) ``` #### 2. 调整批量大小 - **直接降低显存需求**:将 `batch_size` 减少为原来的 $1/2$ 或 $1/4$。例如: ```python train_loader = DataLoader(dataset, batch_size=32) # 原64 → 改为32 ``` #### 3. 优化训练循环 - **释放中间变量**:在每个批次后手动清理无用的张量: ```python for data, target in train_loader: data, target = data.to(device), target.to(device) # 前向传播与反向传播 del data, target, output, loss # 显式删除 torch.cuda.empty_cache() # 清空缓存(作用有限,但可辅助) ``` #### 4. 启用梯度检查点 - **用计算换显存**:在模型定义中使用 `torch.utils.checkpoint`,例如: ```python from torch.utils.checkpoint import checkpoint class Model(nn.Module): def forward(self, x): x = checkpoint(self.layer1, x) # 分段存储中间结果 return x ``` #### 5. 配置PYTORCH_CUDA_ALLOC_CONF - **减少内存碎片**:设置环境变量 `expandable_segments` 和 `max_split_size_mb`: ```python import os os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True,max_split_size_mb:512" ``` #### 6. 混合精度训练 - **降低显存占用**:使用 `torch.cuda.amp` 自动转换精度: ```python scaler = torch.cuda.amp.GradScaler() with torch.cuda.amp.autocast(): output = model(data) loss = loss_fn(output, target) scaler.scale(loss).backward() scaler.step(optimizer) scaler.update() ``` #### 7. 分布式训练 - **多GPU并行**:使用 `DataParallel` 或 `DistributedDataParallel`: ```python model = nn.DataParallel(model).to(device) ``` #### 8. 硬件与模型优化 - **更换硬件**:若模型参数过多(例如参数量 $N$ 满足 $N \times 4\ \text{Bytes} > \text{显存容量}$),需更换更高显存GPU或使用云服务。 - **简化模型**:减少层数或使用轻量级结构(如MobileNet)。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值