使用GREAT对peak进行功能注释

欢迎关注”生信修炼手册”!

GREAT是一款peak区间进行基因注释的工具,除了给出peak对应的基因外,还集成了多种基因的功能分析,网址如下

http://great.stanford.edu/public/html/index.php

目前该在线工具只支持以下几个物种

  1. Human

  2. Mouse

  3. Zebrafish

在使用时,还需要注意对应的基因组版本。用法比较简单,选择对应的基因组版本,然后上传对应的BED格式的peak文件即可,示意如下

结果展示如下,给出了peak关联基因的个数和TSS距离的频数分布柱状图

除此之外,还给出以下多种基因的功能分析

  1. GO Molecular Function

  2. GO Biological Process

  3. GO Cellular Component

  4. Mouse Phenotype

  5. Human Phenotype

  6. Disease Ontology

  7. MsigDB Cancer neighborhood

  8. Placenta Disorders

  9. PANTHER Pathway

  10. BioCyc Pathway

  11. MsigDB Pathway

  12. MGI Expression

  13. MgisDB Perturbation

不同于传统的费舍尔精确检验,功能富集分析的p值是基于二项分布的计算得到的,计算过程如下所示

以GO中MF这一类别的功能注释为例,示意如下

通过GREAT可以方便的对peak关联的基因功能进行探究。

·end·

—如果喜欢,快分享给你的朋友们吧—

扫描关注微信号,更多精彩内容等着你!

<think>好的,用户想了解关于scATAC-seq数据处理的方法、工具或教程。首先,我需要回忆一下相关的知识点,并参考提供的引用内容。引用[3]提到了Granja等人的数据集,可能涉及处理流程。引用[2]讨论了scBasset在细胞嵌入和邻居分数上的表现,这可能与数据分析工具相关。 首先,scATAC-seq的数据分析流程通常包括以下几个步骤:数据预处理(质控、比对)、peak calling、生成细胞×peak矩阵、降维聚类、注释分析等。需要确认每个步骤的常用工具,比如Cell Ranger用于数据预处理,MACS3用于peak calling,ArchR或Signac用于后续分析。 然后,用户可能需要具体的工具推荐,比如引用[2]提到的scBasset是一个深度学习工具,用于学习细胞表示,表现优于其他方法。此外,ArchR和Signac是常用的R包,适合处理单细胞ATAC数据,提供从矩阵处理到可视化的全流程支持。 另外,教程方面,Granja等人的数据在引用[3]中被提及,可以推荐用户参考他们的方法部分或相关教程。同时,10x Genomics官网可能有详细的流程指南,适合初学者。 还需要注意用户提到的生物信息学工具的比较,比如scBasset在邻居分数上的优势,这可能是在多组学数据整合中的表现,需要强调这一点。同时,质控步骤中的细节,如TSS富集分数和片段大小分布,也是关键点,应该提到相关工具如MACS3或Cell Ranger ATAC。 最后,用户可能需要了解分析后的下游应用,比如细胞类型注释、轨迹分析等,可以推荐Cicero用于共可及性分析,Monocle3用于伪时间分析。此外,多组学整合分析是当前的热点,引用[2]中的方法可能对此有帮助。 需要确保回答结构清晰,分步骤说明流程,工具推荐包括常用和最新的方法,并引用提供的资料。同时,生成的相关问题要围绕流程步骤、工具比较、教程资源、数据整合和应用场景展开,帮助用户深入理解。</think>### scATAC-seq数据分析流程与工具 scATAC-seq(单细胞染色质可及性测序)数据分析主要包括以下步骤,结合常用工具和最新方法: --- #### **1. 数据预处理与质控** - **原始数据比对**:使用`Cell Ranger ATAC`(10X Genomics官方流程)或`BWA`进行测序数据比对到参考基因组[^3]。 - **质控指标**: - 每个细胞的唯一片段数(UMI) - TSS富集分数(评估染色质开放区域质量) - 核小体信号与片段大小分布(排除凋亡细胞) - **工具推荐**:`MACS3`用于peak calling,`SnapATAC`或`ArchR`进行质控过滤[^2]。 --- #### **2. 生成细胞×peak矩阵** - **Peak定义**:合并样本间重复peak区域,生成统一峰集。 - **矩阵构建**:统计每个细胞在各peak区域的片段覆盖数,生成稀疏矩阵。 - **工具推荐**:`Signac`(R包)或`ArchR`支持高效矩阵处理。 --- #### **3. 降维与聚类** - **降维方法**:通过TF-IDF标准化后,使用潜在语义索引(LSI)或深度学习模型(如`scBasset`)降维。 - **图聚类**:基于降维结果构建最近邻图,使用Leiden算法聚类。 - **工具优势**:`scBasset`在多组数据集上表现优异,其邻居分数(neighbor score)评估跨模态一致性。 --- #### **4. 细胞类型注释功能分析** - **注释方法**: - 匹配scRNA-seq参考数据集(如`SingleR`) - 利用peak附近基因的富集分析(如`GREAT`) - **共可及性分析**:`Cicero`预测染色质开放区域的基因调控网络。 --- #### **5. 高级分析与可视化** - **轨迹推断**:`Monocle3`或`PAGA`分析细胞分化路径。 - **多组学整合**:使用`Seurat v5`或`MOFA+`整合scATAC与scRNA数据。 --- ### **常用工具对比** | 工具 | 功能 | 优势 | |------------|------------------------|-----------------------------------------| | ArchR | 全流程分析 | 交互式可视化,支持大规模数据 | | Signac | 矩阵处理与整合 | 与Seurat无缝衔接,适合多模态分析 | | scBasset | 深度学习建模 | 在邻居分数评估中表现最优[^2] | | Cicero | 共可及性网络 | 揭示调控元件相互作用 | --- ### **推荐教程与数据集** 1. **Granja et al. 2019教程**:基于BMMC和PBMC数据,适合入门实践。 2. **10X Genomics官方指南**:提供从Cell Ranger到下游分析的完整流程。 3. **ArchR官方文档**:包含实战案例与代码模板(https://www.archrproject.com/)。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值