【论文精读】Occupancy Networks: Learning 3D Reconstruction in Function Space

0、摘要

随着深度神经网络的出现,基于学习的3D重建方法得到了普及。然而,与图像不同,在3D中没有计算和内存有效的规范表示,且允许表示任意拓扑的高分辨率几何。因此,许多最先进的基于学习的3D重建方法只能表示非常粗糙的3D几何,或者仅限于有限的区域。在本文中,我们提出了一种新的基于学习的3D重建方法- -占位网络。占位网络隐式地将3D曲面表示为深度神经网络分类器的连续决策边界。与现有方法不同的是,我们的表示编码了无限分辨率的3D输出描述,而没有过多的内存占用。我们验证了我们的表示可以有效地编码3D结构,并且可以从各种输入中推断出来。我们的实验从定性和定量两个方面展示了在从单张图像、噪声点云和粗离散体素网格进行三维重建的挑战性任务中具有竞争力的结果。我们相信占位网络将成为各种基于学习的3D任务中的有用工具。
在这里插入图片描述

1、主要思想

设计了一个网络:Occupancy Network,该网络通过学习拟合一个函数f,其实相当于是学习了一个回归网络,输入一个点,网络输出占用概率[0,1]。
在这里插入图片描述
input:张量维度即为(X,3),
output: 张量维度(X,1)。

2、实现细节

2.1 网络结构

  • Occupancy Network (Onet):全连接层FCN+5个ResNet blocks+(batch normalization)
  • 不同的输入,不同的encoder(为什么需要encoder?,对输入数据先提取特征,转化为latent code,再输入Onet?)
    • 3D reconstruction: ResNet18 architecture
    • point clouds: PointNet encoder
    • voxelized inputs: 3D convolutional neural network
    • unconditional mesh generation: PointNet

训练,loss函数

  • 先采样点,采样方式会影响结果。Uniform最好
  • To our surprise, we find that uniform, the simplest sampling strategy, works best. We explain this by the fact that other sampling strategies introduce bias to the model: for example, when sampling an equal number of points inside and outside the mesh, we implicitly tell the model that every object has a volume of 0.5.
  • Moreover, we find that reducing the number of sampling points from 2048 to 64 still leads to good performance

在这里插入图片描述

  • loss 函数
    在这里插入图片描述
  • 概率隐变量模型的loss函数,z就是隐变量
    在这里插入图片描述

推理,重建mesh

  • 1、先确定一个初始的分辨率,将格点的坐标输入Onet,得到占用概率
  • 2、定一个阈值T,占用概率减去这个阈值T.(阈值T决定了 提取表面的thickness厚度?)如果一个格点与至少两个相邻格点的占用概率异号,那么格点连线穿过了表面
  • 3、对每个网格继续划分,新产生的格点再输入Onet中得到得到占用概率。
  • 4、重复第3步,直到分辨率达到预设值
  • 5、采样marching cubes算法提取mesh
  • 6、使用Fast-Quadric-Mesh-Simplification算法进行微调
  • 7、使用一阶和二阶梯度信息进行微调
    在这里插入图片描述

在这里插入图片描述

3、实验

3.1 表达能力

we embed each training sample in a 512 dimensional latent space and train our neural network to reconstruct the 3D shape from this embedding.

  • 细节:先将输入映射到512维的特征空间,再从特征空间输出占用概率,再重建3D形状。
  • 数据集:ShapeNet chair
  • 结果:
    在这里插入图片描述

3.2 Single Image 3D Reconstruction

we use a ResNet-18 image encoder, which was pretrained on the ImageNet dataset

  • 细节:
  • 数据集:
    • ShapeNet
    • KITTI
    • Online Products datasets
  • 结果
    在这里插入图片描述
    在这里插入图片描述

3.3 Point Cloud Completion

从有噪声的点云中国重建mesh
在这里插入图片描述

3.4 Voxel Super-Resolution

在这里插入图片描述

3.5 Unconditional Mesh Generation

在这里插入图片描述

4、消融实验

4.1 采样策略的影响

在这里插入图片描述

4.2 网络结构的影响

CBN: conditional batch normalization
在这里插入图片描述

### 回答1: 占用网络是一种用于3D形状建模的深度学习方法。它使用神经网络来预测物体的占用空间,即物体在3D空间中的位置和形状。这种方法可以用于物体识别、姿态估计、形状重建等应用。占用网络的优点是可以处理不规则形状和变形物体,并且可以从单张图像中进行3D重建。 ### 回答2: Occupancy Networks是一种用于3D形状生成和分割的机器学习框架。它与传统的基于网格的方法不同,因为它不需要先对形状进行分割或预处理,并且可以在不同的形状之间共享学习,并且可以生成不同的形状变体。 这个框架的核心是一个神经网络,它可以预测整个三维空间的占据概率函数,指示了该空间中是否存在形状点。 这个网络可以被训练来生成新的3D形状,即使在训练集中没有这些形状的情况下。 Occupancy Networks的优点之一是它可以处理高维空间数据,因为常规的基于网格的方法可以很快消耗内存和处理时间。与传统的3D形状生成方法相比,Occupancy Networks具有优点,因为它可以提供更加准确和一致的形状生成,还可以根据指定的条件生成不同的形状变体。此外,它也具有较强的通用性,可以用于多种形状生成任务,包括3D渲染,建筑设计,医学图像分割和创建虚拟现实环境等领域。在实际应用中,Occupancy Networks具有潜在的应用价值,可以帮助人们更好地掌握和创造3D形状,推进计算机视觉技术的进步和发展。 ### 回答3: Occupancy networks是一种用于三维物体重建和生成的深度学习模型,最初由一组德国和美国研究人员在2019年提出。 Occupancy networks的关键思想是建立一个函数,该函数将三维物体的空间位置映射到其占据体的概率。在训练期间,该函数被用来预测给定三维物体的占据情况,而在生成期间,该函数可以被用来生成新的三维模型。 与传统的三维重建和生成技术相比,Occupancy networks有多个优点。首先,该方法可以处理任意形状和复杂度的三维物体,而不需要特别的先验知识。其次,模型能够从不同的角度观察三维模型,并从这些观察中提取更丰富的表示,更好地反映真实世界中的物体。最后,Occupancy networks能够进行端到端的训练,并且能够在输出时进行随机采样,因此可以生成具有一定随机性的三维物体。 另外,Occupancy networks也有一些挑战和限制。例如,该方法可能需要大量的数据,以克服三维空间的样本稀缺性。此外,Occupancy networks的训练和生成成本很高,需要更强的计算资源。 总而言之,Occupancy networks是一种有前途的三维物体重建和生成模型,它在许多方面的性能都有了很大的进步,但仍需要更多的研究和改进。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

繁星知微

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值