YOLOv5/v7 应用轻量级通用上采样算子CARAFE

在这里插入图片描述

特征上采样是现代卷积神经网络架构中的关键操作,例如特征金字塔。其设计对于密集预测任务,如目标检测和语义/实例分割至关重要。在本研究中,我们提出了一种称为内容感知特征重组(CARAFE)的通用、轻量级且高效的操作符,以实现这一目标。CARAFE具有以下几个优点:(1)大的视野。与之前的方法(例如双线性插值)只利用亚像素邻域不同,CARAFE可以在大的感受野内聚合上下文信息。(2)内容感知处理。CARAFE通过生成实时自适应的卷积核,实现了实例特定的内容感知处理,而不是对所有样本使用固定的卷积核(例如反卷积)。(3)轻量且计算速度快。CARAFE引入了很少的计算开销,并且可以轻松地集成到现代网络架构中。我们在目标检测、实例/语义分割和修复等标准基准上进行了全面评估。CARAFE在所有任务中都显示出一致且显著的性能提升(分别为1.2% AP、1.3% AP、1.8% mIoU和1.1dB),计算开销几乎可以忽略不计。它具有作为未来研究的强大构建块的潜力。

论文地址:https://arxiv.org/abs/1905.02188
代码地址:https: //github.com/open-mmlab/mmdetection


  • 14
    点赞
  • 187
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 42
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 42
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

迪菲赫尔曼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值