算法联调篇 | YOLOv8融入低照度图像增强算法---传统算法篇

本文介绍了将传统低照度图像增强算法应用于YOLOv8,探讨了直方图均衡化、自适应直方图均衡化、伽马变换和MSR算法,强调传统算法在速度和实时性上的优势。实验表明,这些方法能提升目标检测的召回率和置信度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

YOLOv8n原图检测 YOLOv8n增强后检测
请添加图片描述 请添加图片描述
请添加图片描述 请添加图片描述
召回率和置信度都有提升

前言

这篇博客讲讲低照度,大家都催我出一些内容,没想到这么多同学搞这个,恰好我也做过这方面的一些工作,那今天就来讲解一些方法,低照度的图像增强大体分“传统算法”和“深度学习算法”;

<
评论 26
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

迪菲赫尔曼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值