多骨干、多融合:RT-DETR 如何解锁主干网络新姿势?


前言

这篇来说说“多模态融合”,最近有很多同学来问如何拿到“第0层特征图”,也就是没经过模块处理的那层特征图,也就是我下图框住的这层的输入特征图,那我猜测大家可能想做一个类似于“多模态融合”的一个结构;

在这里插入图片描述

一般常见的可能都是两种模态的输入数据,比如红外图像和RGB图像,或者深度图像和RGB图像,这种都是真正的两个模态的输入数据,

有些同学可能也想做一些“单RGB图像的多模态”,主要就是表现在多个特征提取主干,个人觉得这也算是很好的思路,虽然输入的数据是还是单RGB,但是确实可以模仿“多模态融合”做一些工作的,比如像下面这个论文讲到的一些方法,“单RGB图像的多模态”也同样可以做到

下面就说下如何在 RT-DETR 如何实现多主干特征融合方式,主要就是添加一个模块,这个模块是我在v9中看到的,相当于是一个什么也不做的模块,就是为了我们在 yaml<

### RT-DETR 模型介绍 #### 模型概述 RT-DETR(Real-Time Detection Transformer)是一种基于Transformer架构设计的目标检测模型[^1]。此模型引入了自注意力机制用于处理图像数据,从而区别于传统的卷积神经网络(CNN),如YOLO系列所使用的连续卷积层直接分析图像区域的方法。 #### 架构特点 通过采用Transformer中的自注意力机制,RT-DETR可以更加高效地捕捉到图片内部各部分间的关系,在面对复杂的场景以及个物体共存的情况下表现出更高的准确性与效率。此外,为了适应实际应用场景对于速度的要求,RT-DETR还特别针对实时性能做了优化调整,确保能够在保证高质量输出的前提下实现快速响应。 #### 性能对比 相较于早期版本的DETR,尽管后者已经取消了非极大值抑制(NMS)过程但仍存在速度劣势;而一代的RT-DETR则在此基础上做出了更改进措施,有效提升了运行速率并缩小了同YOLO这类轻量化框架间的差距[^2]。 --- ### 应用实例 #### 数据准备与环境配置 当想要使用RT-DETR进行项目开发时,首先需要准备好相应的训练数据集,并设置好合适的计算资源环境。例如可以通过编写`train.py`文件来加载预定义好的模型配置: ```python from ultralytics import RTDETR import os if __name__ == '__main__': # 初始化模型 model = RTDETR(model="ultralytics/cfg/models/rt-detr/rtdetr-l.yaml") # 开始训练流程 results = model.train( data="VOC.yaml", patience=0, epochs=100, device='0', batch=8, seed=42 ) ``` 上述代码片段展示了如何创建一个RT-DETR实例并启动其训练过程,其中包含了指定参数如批次大小(batch size)、迭代次数(epoch number)等选项[^3]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

迪菲赫尔曼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值