文章目录
YOLOv8 损失函数概述
YOLOv8 的总损失由定位损失、分类损失、置信度损失及可选的蒸馏损失组成。其中,定位损失采用了 DFL 与 CIoU 结合的方式,继承前代解耦式定位损失的优点,并进一步优化。
ShapeIoU 与 InnerShapeIoU 损失介绍
ShapeIoU 损失
ShapeIoU 是一种改进的 IoU 损失函数,它在传统 IoU 的基础上,引入了形状相似性度量,弥补了传统 IoU 仅关注重叠区域比例而忽略边界框形状差异的不足。其计算公式为:
[ \text{ShapeIoU} = \frac{\text{IoU} + \alpha \cdot \text{ShapeSimilarity}}{1 + \alpha} ]
其中,α 是平衡参数,形状相似性可通过边界框的宽高比差异来计算。
InnerShapeIoU 损失
InnerShapeIoU 进一步扩展了 ShapeIoU 的思想,不仅考虑边界框整体形状,还关注内部区域的形状相似性,对处理复杂形状目标更为重要。其计算公式为:
[ \text{InnerShapeIoU