2.1softMax回归
2.1.1softmax函数
2.1.2几个算法之间的对比
算法 | 策略 | 优化 |
---|---|---|
线性回归 | 均方误差 | 梯度下降 |
逻辑回归 | 对数似然损失 | 提低下降(二分类) |
神经网络 | 交叉熵损失(似然的升级) | 反向传播BP,也就是梯度下降.文本(二分类或者多分类) |
2.1.3损失函数
我们的损失函数必须经过one-hot的编码
2.2损失计算API
2.3其他方法API
2.1.1softmax函数
2.1.2几个算法之间的对比
算法 | 策略 | 优化 |
---|---|---|
线性回归 | 均方误差 | 梯度下降 |
逻辑回归 | 对数似然损失 | 提低下降(二分类) |
神经网络 | 交叉熵损失(似然的升级) | 反向传播BP,也就是梯度下降.文本(二分类或者多分类) |
2.1.3损失函数
我们的损失函数必须经过one-hot的编码