[论文阅读]Benchmarking 6DOF Outdoor Visual Localization in Changing Conditions

本文提出首个在变化条件下评估户外视觉定位的基准数据集,涵盖日夜变化、季节和天气变化。通过对3个数据集——Aachen Day-Night、RobotCar Seasons和CMU Seasons的分析,揭示了现有算法在处理夜间和植被环境变化时的局限性,强调了多图像查询在定位中的价值,并公开了基准数据集以促进长期视觉定位研究。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Benchmarking 6DOF Outdoor Visual Localization in Changing Conditions

1.英文单词理解
ground truth : 在机器学习中,“ground truth”一词指的是训练集对监督学习技术的分类的准确性。这在统计模型中被用来证明或否定研究假设。“ground truth”这个术语指的是为这个测试收集适当的目标(可证明的)数据的过程。
SFM:Structure from motion (SfM) Structure from motion(SFM)是由一系列包含着视觉运动信息(motion signals)的多幅二维图像序列(2D image sequences)估计三维结构(3D model)的技术。
原文链接:https://blog.csdn.net/Mahabharata_/article/details/70799695
Benchmarking 基准
trade-off 权衡
discriminative 判别力
prohibitive 令人难以承受
complimentary 免费的
geometry 几何
vegetation 植被
illumination 照明
suburban 郊区
trajectory 轨迹
overcast 灰蒙蒙
with respect to 关于
exploit 利用
outlier 离群值(异常值)
retrieve 找回
scale 范围,规模,级别
aggregates 合计
augmented 增强

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值