【迁移学习(Transfer L)全面指南】CVPR(2020)元学习、小样本、领域自适应、领域泛化和迁移学习概述

本文详细介绍了元学习和小样本学习的概念,探讨了它们在深度学习中的应用,特别是元学习在人脸识别、强化学习、视频帧插值等方面的研究进展。同时,文章还涵盖了小样本学习在图像分割、对象检测等领域的最新论文,以及领域自适应和领域泛化的研究,包括基于差异、对抗和重构的方法,强调了迁移学习在图像去雨、行人重识别等任务中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 元学习

元学习,meta-learning,又叫learning to learn,直译即为学习如何学习,从中文字面上来理解,似乎这类算法更接近人类的学习方式——触类旁通,举一反三。而传统的深度学习方法虽然功力强大,但是框架无外乎都是从头开始学习(训练),即learning from scratch,对算力和时间都是更大的消耗和考验。元学习的诞生促使机器学习向另一侧面突进,以更接近人类和更具效率的方式实现人工智能。元学习包括Zero-Shot/One-Shot/Few-Shot 学习,模型无关元学习(Model Agnostic Meta Learning)和元强化学习(Meta Reinforcement Learning)等。

它希望模型获取一种“学会学习”的能力,使其可以在获取已有“知识”的基础上快速学习新的任务,它的意图在于通过少量的训练实例设计能够快速学习新技能或适应新环境的模型。

与迁移学习:
元学习更偏重于任何和数据的双重采样, 任务和数据一样是需要采样的,而学习到的F(x)可以帮助在未见过的任务f(x)里迅速建立mapping。 而迁移学习更多是指从一个任务到其它任务的能力迁移,不太强调任务空间的概念
Learning Me

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

理想不闪火

你的鼓励将是我最大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值