Image1000优秀网络简介(目-标-分-类)

历年image1000优秀网络汇总

参考论文《Deep Learning for Generic Object Detection: A Survey》历年image1000优秀网络汇总如下表:
在这里插入图片描述
在这里插入图片描述
在发展过程中也出现了很多优秀的轻量化模型:SqueezeNet、MobileNet、ShuffleNet、Xception

AlexNet

alexnet 网络总共的层数为8层,5层卷积,3层全连接层。不多说,直接上图:
在这里插入图片描述

VGGNet(2014亚军)

在这里插入图片描述
在这里插入图片描述
特点:
1)VGG由5层卷积层、3层全连接层、softmax输出层构成,层与层之间使用max-pooling分开,采用ReLU函数。
2)VGG使用多个较小卷积核(3x3)的卷积层代替一个卷积核较大的卷积层,一方面可以减少参数,另一方面相当于进行了更多的非线性映射,可以增加网络的拟合/表达能力。
3)相比AlexNet的3x3的池化核,VGG全部采用2x2的池化核。
4)层数更深、特征图更宽。

GoogleNet(2014冠军)

GoogleNet的Inception历经了V1、V2、V3、V4等多个版本的发展。

InceptionV1

在这里插入图片描述引入1x1卷积的主要目的是为了减少维度和计算量。网络结构如下:
在这里插入图片描述

Inception V2

大尺寸的卷积核可以带来更大的感受野,但也意味着会产生更多的参数,比如5x5卷积核的参数有25个,3x3卷积核的参数有9个,前者是后者的25/9=2.78倍。因此,GoogLeNet团队提出可以用2个连续的3x3卷积层组成的小网络来代替单个的5x5卷积层,即在保持感受野范围的同时又减少了参数量,如下图:

在这里插入图片描述
那么这种替代方案会造成表达能力的下降吗?通过大量实验表明,并不会造成表达缺失。
可以看出,大卷积核完全可以由一系列的3x3卷积核来替代,那能不能再分解得更小一点呢?GoogLeNet团队考虑了nx1的卷积核,如下图所示,用3个3x1取代3x3卷积:

在这里插入图片描述
因此,任意nxn的卷积都可以通过1xn卷积后接nx1卷积来替代。

在这里插入图片描述
降低特征图大小:
在这里插入图片描述先池化再作Inception卷积,或者先作Inception卷积再作池化。但是方法一(左图)先作pooling(池化)会导致特征表示遇到瓶颈(特征缺失),方法二(右图)是正常的缩小,但计算量很大。为了同时保持特征表示且降低计算量,将网络结构改为下图,使用两个并行化的模块来降低计算量(卷积、池化并行执行,再进行合并)

在这里插入图片描述

Inception V3

Inception v3整体上采用了Inception v2的网络结构,并在优化算法、正则化等方面做了改进,总结如下:

  1. 优化算法使用RMSProp替代SGD。
  2. 使用Label Smoothing Regularization(LSR)方法。
  3. 将第一个7x7卷积层分解为两个3x3卷积层。
  4. 辅助分类器(auxiliary classifier)的全连接层也进行了batch-normalization操作。

Inception V3一个最重要的改进是分解(Factorization),将7x7分解成两个一维的卷积(1x7,7x1),3x3也是一样(1x3,3x1),这样的好处&

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
(1)第一阶段(Region Proposals阶段):对一帧图像采用Selective Search算法得到最有可能是的2000个左右的Region Proposals(候选区域),改善了传统滑窗的思想(复杂度在10万-100万个候选区域),Selective Search算法采用合并超像素生成proposals(具体的详细的介绍参考第一篇论文《What makes for effective detection proposals?》)这是第一阶段,改善传统滑窗的笨方法,使得算法复杂度降低。 (2)第二阶段(特征提取):对于图像深层信息的理解,采用卷积神经网络抽取图像中卷积特征,这里需要主要的是:R-CNN会将上一阶段的2000张Region Proposals首先进行大小尺寸的归一化处理为227*227(像素大小),对每一个Region Proposals都要进行复杂的卷积计算(2000次同样的复杂卷积计算?对,没错,有一些细节差别很小的Region Proposals也要重新进行卷积计算,再强的GPU也HOLD不住这样折腾啊)。随后卷积层计算完成特征抽取完成之后,将全连接层的输出直接作为Region Proposals的特征信息,至此第二阶段完成。 (3)第三阶段():这里跟传统的方法有似曾相识的感觉,根据特征(传统的方法利用人工特征模型,这里采用卷积神经网络全连接层输出作为卷积特征),利用支持向量机(这里我也做过一定的总结,有兴趣的可以作为参考)的方法将数据进行最大间隔可能的划,使得效果达到预期效果

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值