测度论与概率论基础学习笔记9——3.4概率空间中的积分

数学期望,本质上就是在概率空间上的积分。对于抽象概率空间,可以将期望转换到实数集上进行计算,有如下定理:
定理3.4.1
f f f是概率空间 ( X , F , P ) (X,\mathscr F,P) (X,F,P)上的随机变量,其分布函数为 F F F,则对任何 ( R , B R ) (\mathbb R,\mathscr B_R) (R,BR)上的可测函数 g g g g ∘ f g\circ f gf ( X , F , P ) (X,\mathscr F,P) (X,F,P)上的可测函数,且只要
E ( g ∘ f ) = ∫ R g d F E(g\circ f)=\int_R g{\rm d} F E(gf)=RgdF
两侧的其中一端成立,另一端有意义且成立。
这个等式将抽象空间的积分转换为实数轴上的L-S积分。

一个小结论:高阶矩存在,则低阶矩存在: L t ⊂ L s , 0 < s ≤ t < ∞ L_t \subset L_s,0<s\le t <\infty LtLs,0<st<

定理3.4.2
0 < s < t < ∞ 0<s<t<\infty 0<s<t<,则对任何 ( X , F , P ) (X,\mathscr F,P) (X,F,P)上的随机变量 f f f有:
∣ ∣ f ∣ ∣ s ≤ ∣ ∣ f ∣ ∣ t ||f||_s\le||f||_t fsft

证明:由Holder不等式,考虑函数 ∣ f ∣ s |f|^s fs g ≡ 1 g\equiv1 g1,以及共轭数 p = t / s p=t/s p=t/s q = t / ( t − s ) q=t/(t-s) q=t/(ts),有:
∣ ∣ f ∣ ∣ s = ∫ ∣ f ∣ s d P = ∫ ∣ f ∣ s ⋅ 1 d P ≤ ∣ ∣ ∣ f ∣ s ∣ ∣ t / s ⋅ ∣ ∣ g ∣ ∣ t / ( t − s ) = ∣ ∣ f ∣ ∣ t ||f||_s=\int|f|^s{\rm d}P=\int|f|^s·1{\rm d}P\le |||f|^s||_{t/s}·||g||_{t/(t-s)}=||f||_t fs=fsdP=fs1dPfst/sgt/(ts)=ft

定义3.4.2 一致可积
{ f t , t ∈ T } \{f_t,t\in T\} {ft,tT}是一个随机变量集,如果
lim ⁡ λ → ∞ sup ⁡ t ∈ T E ∣ f t ∣ I ( ∣ f t ∣ > λ ) = 0 \lim_{\lambda\to\infty} \sup_{t\in T}E|f_t|I(|f_t|>\lambda)=0 λlimtTsupEftI(ft>λ)=0
则称 { f t , t ∈ T } \{f_t,t\in T\} {ft,tT}一致可积,其中 I I I是指示函数。

与之相关的还有绝对连续的概念,和一致可积的表达式相似,只不过是把 { λ → ∞ } \{\lambda\to\infty\} {λ}换成了一般化的测度趋于0的集合,如下式所示:
lim ⁡ P ( A ) → 0 sup ⁡ t ∈ T E ∣ f t ∣ I A = 0 \lim_{P(A)\to 0} \sup_{t\in T}E|f_t|I_A=0 P(A)0limtTsupEftIA=0

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值