公开可用的通用大语言模型检查点

本文介绍了多个公开可用的通用大语言模型,包括Meta AI的LLaMA和LLaMA-2,智谱AI的ChatGLM,阿布扎比TII的Falcon,百川智能的Baichuan和Baichuan-2,上海人工智能实验室的InternLM和InternLM-2,阿里巴巴的Qwen,Mistral AI的Mistral和Mixtral,幻方公司的DeepSeek LLM,谷歌的Gemma,面壁智能的MiniCPM以及中国人民大学的YuLan-Chat。这些模型在自然语言处理任务上表现出色,涵盖代码生成、对话、知识问答等多个领域,并在不断迭代优化,推动了大语言模型领域的进步。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

LLaMA 和 LLaMA-2

LLaMA 是 Meta AI 在 2023 年 2 月发布的一系列大语言模型,有 7B、13B、30B 和 65B 四种参数规模版本,是当时性能非常优异的开源模型之一,直到目前也仍然被广泛使用与对比。其中,13B 参数的版本在部分自然语言处理基准测试中超越了具有175B 参数的 GPT-3 模型。LLaMA 各个参数量版本都在超过 1T 词元的预训练语料上进行了训练,其中 65B 参数的模型版本在 2,048 张 80G 显存的 A100 GPU 上训练了近 21 天。由于对公众开放了模型权重且性能优秀,LLaMA 已经成为了最受欢迎的开源大语言模型之一,许多研究工作都是以其为基座模型进行微调或继续预训练,衍生出了众多变体模型,极大地推动了大语言模型领域的研究进展。2023 年 7 月,Meta AI 公开发布了 LLaMA-2,对第一代模型进行了综合升级。LLaMA-2 有 7B、13B、34B(未开源)和 70B 四种参数规模版本,并且可用于商用。相比于第一版LLaMA,LLaMA-2 扩充了预训练的词元量(达到了 2T),同时将模型的上下文长度翻了一倍(达到 4,096 个词元),并引入了分组查询注意力机制等技术来提升模型性能。此外,Meta AI 使用 LLaMA-2 作为基座模型,通过进一步的有监督微调、基于人类反馈的强化学习等技术对模型进行迭代优化,完整经历了“预训练-有监督微调-基于人类反馈的强化学习”这一训练流程,并发布了面向对话应用的微调系列模型 LLaMA-2 Chat(同样具有四种参数规模的版本)。LLaMA-2 Chat不仅在许多任务上具有更好的模型性能(例如代码生成、世界知识、阅读理解和数学推理),同时在应用中也更加安全。

ChatGLM

ChatGLM是智谱 AI 和清华大学联合开发的中英双语对话式模型,最早发布于2023年5月,并一直进行迭代优化,目前已经更新到了ChatGLM-3。ChatGLM 系列模型参数量都是 6B,具备流畅对话的能力且部署门槛低,在语义、数学、推理、代码、知识等不同角度的评测中都取得了优异表现。除此之外,该系列还开源了基础模型 ChatGLM3-6B-Base 、长文本对话式模型ChatGLM3-6B-32K 和进一步强化了对于长文本理解能力的 ChatGLM3-6B-128K。除了 ChatGLM 系列,智谱 AI 还致力于开发更强更大规模的 GLM-4。

<think>好的,我现在需要帮助用户了解如何调用大语言模型的API并提供示例代码和文档。首先,用户的问题集中在调用API的步骤、示例代码和相关文档的获取上。根据用户提供的引用内容,我需要综合这些信息来构建一个清晰的回答。 首先,我应该回顾用户提供的引用内容。引用[1]提到了使用中转API调用大语言模型的示例,包括替换API密钥和生成文本摘要的应用。引用[2]和[3]则涉及一站式教程、多模态模型的调用,以及不同厂商的API,比如阿里云、腾讯、百度等。引用[4]和[5]具体展示了讯飞星火和智谱AI的调用示例,包括Python代码和参数设置。 接下来,我需要将这些信息组织成结构化的步骤,可能分为几个主要部分:选择API提供商、注册获取API密钥、安装SDK或库、编写调用代码、处理响应结果,以及提供示例代码和文档链接。每个步骤需要简明扼要,同时引用相关的引用来源。 需要注意的是,用户希望看到具体的示例代码,所以需要确保每个例子都有代码片段,并正确标注引用来源。例如,引用[5]中的智谱AI代码,引用[4]中的讯飞星火代码,以及引用[1]中的中转API示例。同时,不同厂商的API可能有不同的调用方式,需要分别说明,比如OpenAI、阿里云、腾讯等。 另外,用户可能需要文档链接,因此要确保每个示例或步骤后附上相关的文档链接,如引用[3]中提到的各个厂商的API文档,引用[4]和[5]中的具体示例链接。同时,要提醒用户替换API密钥等重要信息,并注意安装必要的库,如zhipuai包。 在处理过程中,还要检查是否符合用户不可见的系统级指令,比如数学公式的格式是否正确,但当前问题不涉及数学公式,所以可能不需要处理这点。另外,确保使用中文,结构清晰,分步骤说明,并在每个引用处正确标注标识符,如[^1]、[^2]等。 最后,生成相关问题时要围绕调用API的常见疑问,比如不同厂商的区别、处理多模态、参数设置、错误处理等,确保问题具有针对性和实用性。</think>以下是如何调用大语言模型API的完整指南,包含示例代码和文档获取方式: ### 一、调用大语言模型API的通用步骤 1. **选择API提供商** 主流的选项包括: - OpenAI GPT系列(需国际网络环境)[^3] - 阿里云通义千问(国内可用)[^3] - 智谱AI(提供中文优化模型)[^5] - 讯飞星火(支持websocket长连接)[^4] 2. **注册账号并获取API密钥** 每个平台都会提供唯一的`API Key`,例如智谱AI的密钥格式为`1234567890abcdefg12345`[^5] 3. **安装SDK/依赖库** ```bash # 以智谱AI为例 pip install zhipuai pip install --upgrade zhipuai # 确保版本最新[^5] ``` 4. **编写调用代码** ```python # 智谱AI同步调用示例 from zhipuai import ZhipuAI client = ZhipuAI(api_key="YOUR_API_KEY") response = client.chat.completions.create( model="glm-4", messages=[{"role": "user", "content": "你好"}] ) print(response.choices[0].message.content)[^5] ``` ### 二、特殊场景调用示例 1. **带上下文的对话(讯飞星火)** ```python # 需要配置websocket连接参数 import websocket def on_message(ws, message): print(f"Received: {message}") ws = websocket.WebSocketApp("wss://spark-api.xf-yun.com", on_message=on_message, header={"api_key": "YOUR_KEY"})[^4] ``` 2. **多模态调用(图片/视频识别)** 需使用支持多模态的模型(如GPT-4 Vision),调用时需要指定媒体文件路径: ```python # 伪代码示例 response = client.chat.completions.create( model="gpt-4-vision-preview", messages=[{ "role": "user", "content": [ {"type": "text", "text": "描述这张图片"}, {"type": "image_url", "image_url": "https://example.com/image.jpg"} ] }] )[^2] ``` ### 三、文档获取方式 | 平台 | 文档地址 | |------------|--------------------------------------------------------------------------| | 智谱AI | [开发者中心](https://open.bigmodel.cn/dev/api) | | 讯飞星火 | [官方文档](https://xfyun-doc.xfyun.cn/) 含Python示例代码包下载 | | 通义千问 | [阿里云API Explorer](https://api.aliyun.com/product/dashscope) | 相关问题
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值