计算机视觉2——生成模型VAE

在这里插入图片描述
在这里插入图片描述
分为显式(可以写出函数)和隐式(估计近似函数)
在这里插入图片描述

PixelRNN & PixelCNN

在这里插入图片描述
已知前面的像素值,就能知道生成下一个像素生成某个值的概率。
在这里插入图片描述
因为此处一定是生成的概率最大的点,所以整个过程就是最大化训练数据的似然。
问题: 序列生成太慢。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
白色的地方不参与卷积,只有灰色的地方参与。生成的像素和原来的比较,从而调整模型。(静态)

优点: 估计似然函数,由似然函数得到数值来衡量模型好坏。
缺: 慢

Variational Autoencoders VAE

在这里插入图片描述
压缩维度,生成有效特征。
在这里插入图片描述
在这里插入图片描述
编码器作用: 图像分类,无监督特征学习。
在这里插入图片描述
性能不如直接有监督学习VGG。因为找的特征不是最有效的。

解码器作用: 图像生成。
在这里插入图片描述
在这里插入图片描述
但是,此时码空间记录了稀疏的图像。→变分自编码器
在这里插入图片描述
编码器不是直接生成降维特征z, 而是生成三维正态分布,解码器从分布采样。

在这里插入图片描述
exp部分相当于噪声。此时损失不再是L2正则化,而是:
在这里插入图片描述
即σ接近1。
结果:
在这里插入图片描述
有限混合不够→无限高斯积分
在这里插入图片描述
p(x)由z生成。采样出z*。
在这里插入图片描述
优化下界函数Lb。→vae是近似方法。
在这里插入图片描述
输入x,产生有损失的分布z, 再次产生有损失的x^.
在这里插入图片描述
在这里插入图片描述

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
深度学习生成模型VAE(Variational Autoencoder)是一种基于神经网络的生成模型VAE在产生新数据的时候是基于已有数据来做的,通过学习数据的潜在空间表示,然后从该空间中采样生成新的数据样本。VAE模型结合了自编码器和变分推断的思想,通过最大化样本的下界来优化模型参数,使得生成的样本能够更好地拟合原始数据分布。 与传统的自编码器相比,VAE在编码器部分引入了一个均值向量和方差向量,这样可以使得编码后的潜在表示服从一个高斯分布。这种设计使得VAE不仅能够学习到数据的低维表示,还能够通过在潜在空间中进行采样来生成新的样本。VAE模型的损失函数由重构误差项和正则化项组成,通过最小化该损失函数可以使得生成的样本能够尽可能地接近原始数据分布。 尽管VAE生成新数据方面的效果相对于其他模型可能有些模糊,但它在学习数据分布和生成新数据方面仍然具有一定的优势。通过使用变分推断和重参数化技巧,VAE能够生成具有多样性的样本,并且能够在潜在空间中进行插值和操作,从而得到更多样化的结果。 总结来说,VAE是一种深度学习生成模型,通过学习数据的潜在空间表示,可以生成新的样本。它结合了自编码器和变分推断的思想,并通过最大化样本的下界来优化模型参数。尽管生成的样本可能有些模糊,但VAE在学习数据分布和生成多样化样本方面具有一定的优势。<span class="em">1</span><span class="em">2</span><span class="em">3</span><span class="em">4</span>
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值