一阶电路的时域分析 - 学习笔记

本文详细介绍了电路的响应类型,重点讲解了一阶电路的分析,包括零输入响应、零状态响应和全响应,通过具体例子展示了三要素法在直流激励下分析一阶电路的应用,并提及了正弦激励下的响应和电路的实际应用。
摘要由CSDN通过智能技术生成

学习目标:

重点掌握一阶电路的时域分析
了解二阶电路的时域分析


目标拆解:

理解电路零状态响应/零输入响应/全响应的概念
掌握直流激励下的一阶电路分析方法:三要素法
理解正弦激励下的一阶电路响应的特点
熟悉二阶电路中各个状态的特点


笔记内容:

1. 电路的响应与激励

  • 在动态电路中,电路的响应不仅与激励源有关,而且与电路的结构和动态元件的初始储能有关。如图所示电路的响应y(t)是外加激励源f(t)和电路的初始储能共同作用的结果。数学关系表示动态电路激励与响应的关系
  • 零输入响应
    • 动态电路中无外加激励电源,仅由动态元件初始储能所产生的响应。即f(t)=0。(核心思想就是:所有外加激励均为零。)
  • 零状态响应
    • 电路在零初始状态下(动态元件初始储能为零)由外施激励引起的响应。即x(0)=0。(核心思想:电路中的所有独立初始值均为零。)
  • 全响应
    • 顾名思义,全响应就是:外部激励不为零,且电路中所有动态元件初始储能共同作用引起的响应。对于线性电路:全响应 = 零输入响应 + 零状态响应。

2. 一阶电路分析

2.1一阶电路的零输入响应

  • 动态电路中无外加激励电源,仅由动态元件初始储能所产生的响应。

  • 零输入响应的特征

    • 数学特征
      • 零输入响应的计算就是求解描述该动态方程电路的齐次微分方程
    • 电路特征
      • a. 在等效电路中,没有激励源,即激励源为零:即电压源短路,电流源开路
      • b. 动态元件初始储能不能为零,即 u C ( 0 + ) ≠ 0 , i L ( 0 + ) ≠ 0 u_{C}(0_{+})\neq 0,i_{L}(0_{+})\neq 0 uC(0+)=0,iL(0+)=0
      • c. 零输入响应的过程就是电路动态元件放电的过程,即电路的暂态过程和瞬态过程。
      • d. 电路中各个电路变量的稳态值均为零,即 u C ( ∞ ) = 0 , i L ( ∞ ) = 0 u_{C}(\infty)= 0,i_{L}(\infty)= 0 uC()=0,iL()=0
  • 举例说明(RC电路)

    • 图(a)所示的电路中,在t<0时开关所在位置1,电容被电源充电,电路已处于稳态,电容电压为 u C ( 0 − ) = R 0 ∗ I S u_{C}(0_{-})= R_{0}*I_{S} uC(0)=R0IS
    • t=0时,开关扮向位置2,这样在t>=0时,电容对R放电,电路如图(b)所示,电路中形成放电电流i(t)。
    • t>0后,电路中无电源作用,电路的响应均是由电容的初始储能而产生,故而称为零状态响应。
      在这里插入图片描述
      在这里插入图片描述
  • 根据换路定律得: u C z i ( 0 + ) = u C ( 0 − ) = R o ∗ I s u_{C_{zi}}(0_{+})=u_{C}(0_{-})=R_{o}*I_{s} uCzi(0+)=uC(0)=RoIs i z i ( 0 + ) = u C ( 0 + ) R = I s i_{zi}(0_{+})=\frac{u_{C}(0_{+})}{R}=I_{s} izi

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值