学习目标:
重点掌握一阶电路的时域分析
了解二阶电路的时域分析
目标拆解:
理解电路零状态响应/零输入响应/全响应的概念
掌握直流激励下的一阶电路分析方法:三要素法
理解正弦激励下的一阶电路响应的特点
熟悉二阶电路中各个状态的特点
笔记内容:
1. 电路的响应与激励
- 在动态电路中,电路的响应不仅与激励源有关,而且与电路的结构和动态元件的初始储能有关。如图所示电路的响应y(t)是外加激励源f(t)和电路的初始储能共同作用的结果。
- 零输入响应
- 动态电路中无外加激励电源,仅由动态元件初始储能所产生的响应。即f(t)=0。(核心思想就是:所有外加激励均为零。)
- 零状态响应
- 电路在零初始状态下(动态元件初始储能为零)由外施激励引起的响应。即x(0)=0。(核心思想:电路中的所有独立初始值均为零。)
- 全响应
- 顾名思义,全响应就是:外部激励不为零,且电路中所有动态元件初始储能共同作用引起的响应。对于线性电路:全响应 = 零输入响应 + 零状态响应。
2. 一阶电路分析
2.1一阶电路的零输入响应
-
动态电路中无外加激励电源,仅由动态元件初始储能所产生的响应。
-
零输入响应的特征
- 数学特征
- 零输入响应的计算就是求解描述该动态方程电路的齐次微分方程
- 零输入响应的计算就是求解描述该动态方程电路的齐次微分方程
- 电路特征
- a. 在等效电路中,没有激励源,即激励源为零:即电压源短路,电流源开路;
- b. 动态元件初始储能不能为零,即 u C ( 0 + ) ≠ 0 , i L ( 0 + ) ≠ 0 u_{C}(0_{+})\neq 0,i_{L}(0_{+})\neq 0 uC(0+)=0,iL(0+)=0
- c. 零输入响应的过程就是电路动态元件放电的过程,即电路的暂态过程和瞬态过程。
- d. 电路中各个电路变量的稳态值均为零,即 u C ( ∞ ) = 0 , i L ( ∞ ) = 0 u_{C}(\infty)= 0,i_{L}(\infty)= 0 uC(∞)=0,iL(∞)=0
- 数学特征
-
举例说明(RC电路)
- 图(a)所示的电路中,在t<0时开关所在位置1,电容被电源充电,电路已处于稳态,电容电压为 u C ( 0 − ) = R 0 ∗ I S u_{C}(0_{-})= R_{0}*I_{S} uC(0−)=R0∗IS
- t=0时,开关扮向位置2,这样在t>=0时,电容对R放电,电路如图(b)所示,电路中形成放电电流i(t)。
- t>0后,电路中无电源作用,电路的响应均是由电容的初始储能而产生,故而称为零状态响应。
-
根据换路定律得: u C z i ( 0 + ) = u C ( 0 − ) = R o ∗ I s u_{C_{zi}}(0_{+})=u_{C}(0_{-})=R_{o}*I_{s} uCzi(0+)=uC(0−)=Ro∗Is i z i ( 0 + ) = u C ( 0 + ) R = I s i_{zi}(0_{+})=\frac{u_{C}(0_{+})}{R}=I_{s} izi(0+)=RuC(0+)=Is
-
根据KVL及元器件约束方程得: u C z i ( t ) − u R z i ( t ) = 0 u_{C_{zi}}(t)-u_{R_{zi}}(t) = 0 uCzi(t)−uRzi(t)=0 u R z i ( t ) = i z i ( t ) ∗ R u_{R_{zi}}(t)=i_{zi}(t)*R uRzi(t)=izi(t)∗R i z i ( t ) = − C ∗ d u C z i ( t ) d t i_{zi}(t)=-C*\frac{\mathrm{d}u_{C_{zi}(t)} }{\mathrm{d} t} izi(t)=−C∗dtduCzi(t)
-
带入上述方程可得
-
画出电压电流波形
-
进一步分析一阶RC和一阶RL电路
- 对于任意时间常数为非零有限制(大于零)的一阶电路来说,不仅电容电压、电感电流,而且电路中的所有电路变量的零输入响应都是从它们的初始值按相同的指数规律衰减到零的,且同一电路中所有的电压、电流的时间常数都是相同,所以在直流激励作用下的一阶电路的零输入响应可表示成: y z i ( t ) = y z i ( 0 + ) ∗ e − t τ , t ≥ 0 y_{zi}(t)=y_{zi}(0_{+})*e^{\frac{-t}{\tau }} , t\geq 0 yzi(t)=yzi(0+)∗eτ−t,t≥0
- RC电路时间常数: τ = R o ∗ C , ( s ) \tau=R_{o}*C ,(s) τ=Ro∗C,(s)
- RL电路时间常数: τ = L / R o , ( s ) \tau=L/R_{o} ,(s) τ=L/Ro,(s)
- Ro为电路中独立源置零时自动态元件两端看进去时的戴维南等效电阻。
-
求解直流激励作用下一阶电路零输入响应的步骤
- 1、求出待求初始值
- 独立初始值: u C z i ( 0 + ) , i L z i ( 0 + ) u_{C_{zi}}(0_{+}), i_{L_{zi}}(0_{+}) uCzi(0+),iLzi(0+)
- 非独立初始值: i C z i ( 0 + ) , u L z i ( 0 + ) , u R z i ( 0 + ) i_{C_{zi}}(0_{+}), u_{L_{zi}}(0_{+}), u_{R_{zi}}(0_{+}) iCzi(0+),uLzi(0+),uRzi(0+) i R z i ( 0 + ) , u z i ( 0 + ) , i z i ( 0 + ) i_{R_{zi}}(0_{+}), u_{zi}(0_{+}),i_{zi}(0_{+}) iRzi(0+),uzi(0+),izi(0+)
- 2、求出电路的时间常数,参考RL/RC电路时间常数计算
- 3、应用公式 y z i ( t ) = y z i ( 0 + ) ∗ e − t τ , t ≥ 0 y_{zi}(t)=y_{zi}(0_{+})*e^{\frac{-t}{\tau }} , t\geq 0 yzi(t)=yzi(0+)∗eτ−t,t≥0
- 1、求出待求初始值
一阶电路的零状态响应
- 电路的初始储能为零,仅由外加激励引起的响应叫做零状态响应。
- 零状态响应的特征
- 数学特征
- 电路特征
- a. 在等效电路中,激励源不为零;
- b. 在0+等效电路中,动态元件的初始储能为零,即独立初始值为零。在t=0+瞬间,电容视为短路,电感视为开路;
- c. 零状态响应的过程是动态元件的充电过程。
- d. t 为无穷大时,动态元件中的储能达到最大,暂态过程结束,电路进入新的稳态状态。t为无穷大时等效电路称为稳态电路。可按一般电阻性电路来计算电路中各电路变量的稳态值。
- 数学特征
- 定性分析(RC电路)
- 图例一阶RC电路,电容先未充电,t=0时开关闭合,电路与激励Us接通,试确定S闭合后电路中的响应。
- 图例一阶RC电路,电容先未充电,t=0时开关闭合,电路与激励Us接通,试确定S闭合后电路中的响应。
- 求解直流激励下一阶动态电路零状态响应的步骤
- 1、画出t为无穷时刻等效电路,求出稳态值,电容电压/电感电流;
- 2、求出电路的时间常数;
- 3、应用公式: u c z s ( t ) = u c ( ∞ ) ∗ ( 1 − e − t τ ) , t ≥ 0 u_{czs}(t)=u_{c}(\infty )*(1-e^{\frac{-t}{\tau }}) , t\geq 0 uczs(t)=uc(∞)∗(1−eτ−t),t≥0 i l z s ( t ) = i l ( ∞ ) ∗ ( 1 − e − t τ ) , t ≥ 0 i_{lzs}(t)=i_{l}(\infty )*(1-e^{\frac{-t}{\tau }}) , t\geq 0 ilzs(t)=il(∞)∗(1−eτ−t),t≥0
全响应
- 定义:电路在外加激励和初始状态共同作用下所产生的响应,称为全响应。我们可以将初始状态(初始储能)看作电路的内部激励。对于线性电路,根据叠加定理,全响应又可以分解为: y ( t ) = y z i ( t ) + y z s ( t ) y(t)=y_{zi}(t)+y_{zs}(t) y(t)=yzi(t)+yzs(t) 因此,对于初始状态不为零,外加激励也不为零的电路。初始状态单独作用时(独立源置0)时产生的响应就是零输入响应分量;而外加激励单独作用时(即Uc(0+)=0)时求得的响应就是零状态响应分量。
- 举例
- 结果分析:固有响应和强迫响应 / 暂态响应和稳态响应
在完全解中,第一项(即齐次解)的函数形式仅由特征根确定,而与激励的函数形式无关,称为固有响应和自由响应。式中第二项(即特解)与激励具有相同的函数形式,称为强迫响应。按照电路的工作情况,也常将完全响应分为暂态响应和稳态响应。上式中第一项按指数规律衰减,t趋向于无穷大时,该项为0,称为暂态响应。第二项在任意时刻都保持稳定,称为稳态响应。
三要素公式(直流激励作用)
- 前面求解一阶电路时,都是先列出微分方程,再用经典发求解,比较麻烦。直流电源激励下一阶电路响应的简便计算方法 - 三要素法。
- 三要素公式的推导
- 三要素公式说明
- 三要素公式的小结
y ( t ) = [ y ( 0 + ) − y ( ∞ ) ] e − t τ + y ( ∞ ) y(t)=[y(0_{+})-y( \infty)]e^{-\frac{t}{\tau }} + y( \infty) y(t)=[y(0+)−y(∞)]e−τt+y(∞)- 1、初始值y(0+)
- 先计算 u C ( 0 − ) , i L ( 0 − ) u_{C}(0_{-}), i_{L}(0_{-}) uC(0−),iL(0−) 根据换路定律得: u C ( 0 − ) = u C ( 0 + ) , i L ( 0 + ) = i L ( 0 − ) u_{C}(0_{-})=u_{C}(0_{+}), i_{L}(0_{+})=i_{L}(0_{-}) uC(0−)=uC(0+),iL(0+)=iL(0−)
- 画0+等效电路,求其它电压、电流的初始值。
- 2、稳态值y(∞)
- 换路后t趋向于∞时,电路进入直流稳态,此时,电容开路,电感短路。
- 换路后,电路进入稳态,电容开路,电感短路,画出稳态等效电阻电路。
-求解该电路得稳态(或平衡)值y(-∞)。
- 3、时常数
- 对于一阶RC电路 τ = R o ∗ C , ( s ) \tau=R_{o}*C ,(s) τ=Ro∗C,(s)
- 对于一阶RL电路 τ = L / R o , ( s ) \tau=L/R_{o} ,(s) τ=L/Ro,(s)
- 同理R就是换路后从动态元件C或L看进去的戴维南等效内阻。
- 1、初始值y(0+)
正弦激励下的一阶电路响应
- 实际电路中,除直流电源外,另一类典型的激励就是正弦电源。
电路应用
- 自动点火电路
- 电感阻止电流快速变化的特性可用于电弧或火花发生器中,汽车自动点火电路就是利用这个特性。
- 延时电路
- RC电路常为报警器,电机控制等产生一个延时,当报警单元输入超过某门限时,报警器打开。