deepNF阅读笔记

deepNF具有以下概念上的进步:

(i)通过应用多层非线性函数,构成deepNF的DNN架构来保留非线性网络结构,从而学习更丰富的网络表示;

(ii)它可以处理网络中存在的嘈杂链接,因为自动编码器也已被证明是有效的降噪系统,能够根据损坏的数据构建有用的表示形式;

(iii)它高效且可扩展,因为它使用MDA(Multimodal Deep Autoencoder)以完全不受监督的方式从所有网络中学习低维蛋白质特征,并且独立于功能预测任务。这允许在MDA训练中使用整个数据集,从而获得高质量的功能。

deepNF的步骤在这里插入图片描述

(i)通过首先应用带有重启的随机游走(RWR)方法,然后构造一个捕获网络结构信息的正点向互信息(PPMI)矩阵,将每个网络的结构转换为高质量的矢量表示;

(ii)通过使用MDA融合网络的PPMI矩阵,并从中间层提取蛋白质的低维特征表示;

(iii)通过在SVM分类器上训练SVM分类器来预测蛋白质功能
上一步中计算的低维特征。

使用随机游走方法构建蛋白质的高质量矢量表示

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值