deepNF具有以下概念上的进步:
(i)通过应用多层非线性函数,构成deepNF的DNN架构来保留非线性网络结构,从而学习更丰富的网络表示;
(ii)它可以处理网络中存在的嘈杂链接,因为自动编码器也已被证明是有效的降噪系统,能够根据损坏的数据构建有用的表示形式;
(iii)它高效且可扩展,因为它使用MDA(Multimodal Deep Autoencoder)以完全不受监督的方式从所有网络中学习低维蛋白质特征,并且独立于功能预测任务。这允许在MDA训练中使用整个数据集,从而获得高质量的功能。
deepNF的步骤
(i)通过首先应用带有重启的随机游走(RWR)方法,然后构造一个捕获网络结构信息的正点向互信息(PPMI)矩阵,将每个网络的结构转换为高质量的矢量表示;
(ii)通过使用MDA融合网络的PPMI矩阵,并从中间层提取蛋白质的低维特征表示;
(iii)通过在SVM分类器上训练SVM分类器来预测蛋白质功能
上一步中计算的低维特征。