AI4Science(2024年4月总结):物理驱动及数据驱动深度学习方法用于科学计算问题

 

本文主要介绍,用于科学计算问题中的物理驱动和数据驱动的深度学习方法。通过方法算例,对现有方法总结。时间是2024年4月。原文链接在最后,本文章自己学习使用。

一、物理驱动深度学习方法总结

现有博主更新物理驱动深度学方法总体介绍

二、基于神经网络的PDE方程求解编程教程

单个PDE求解

神经网络求解的是单个PDE方程(固定的边界、初值、源项、区域下),正问题需知道所有约束,逆问题需要部分约束及观测

1.PINN

2.物理信息极限学习机(PIELM)

(1)PIELM

该方法结合极限学习机网络与PINN,实现比PINN更高效的求解与计算,

(2)贝叶斯物理信息极限学习机(量化不确定性)

一种基于物理信息极限学习机的PDE求解方法—扩散方程

3.PINN改进方法

(1)损失项

一种自适应权重的PINN方法(基于不确定性的损失权重自适应

一种基于梯度增强的PINN方法(基于自适应残差梯度)

(2)激活函数

(3)求解域分解

(4)数据损失

(5)PDE约束

4.一种用于时空PDE的内嵌物理卷积循环神经网络

  • 结合物理信息,利用CNN和LSTM求解时序微分方程。

参数化PDE求解

神经网络求解的不是一个PDE,而是多个参数化PDE(可能是变边界、变初值、变源项、变区域),训练后直接预测新参数下的物理场。

1.Deeponet

数据驱动方法,需要标签数据

物理驱动方法,不需要标签数据

2 物理驱动深度学习方法

3.基于降阶模型的方法

  • 一种基于POD和神经网络的代理模型方法

应用

力学应用

流体应用

Wave应用

热传导应用

电磁应用

三、理论知识

1.重要总结

AI4Science:基于神经网络的微分方程求解器论文总结

AI4Science:PINN物理信息神经网络入门及相关论文

AI4Science:关于人工智能时代重要科学发现的总结

AI4Science:物理信息驱动的深度学习(PINN)方向重要进展与趋势

AI4Science:物理信息驱动深度学习相关报告

2.方法理论介绍

物理驱动模型

AI4Science:一种强制约束的物理信息神经网络

AI4Science:一种强制约束的物理信息神经网络用于流形域求解

AI4Science:PDEBench-AI求解微分方程新基准

AI4Science:基于物理信息驱动深度学习的不确定性量化方法—PINN

数据驱动模型

AI4Science:扩散模型基础理论

AI4Science:基于生成模型的复杂流体重建方法总结

AI4Science:AI for science常用模型入门教学

原文链接:https://zhuanlan.zhihu.com/p/665189154

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

热爱生活的五柒

谢谢你的打赏,人好心善的朋友!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值