support vector regression(SVR)支持向量回归

支持向量机回归机器学习

引出:请你说说回归问题可以设置支持向量机吗

支持向量分类方法可以推广到解决回归问题。
这种方法称为支持向量回归,即support vector regression(SVR)

线性回归

线性回归:在向量空间里用线性函数去拟合样本。该模型以所有样本实际位置到该线性函数的综合距离为损失,通过最小化损失来求取线性函数的参数。

严格点在于: 对于线性回归而言,一个样本只要不算正好落在作为模型的线性函数上,就要被计算损失。

SVR—“宽容的回归模型”

支持向量回归(Support Vector Regression,SVR)

模型函数

支持向量回归模型的模型函数也是一个线性函数: y = w x + b y = w x + b y=wx+b ,但是和线性回归是两个不同的回归模型!

不同点在于:

  • 计算损失的原则不同,
  • 目标函数和最优化算法也不同。

原理

SVR在线性函数两侧制造了一个“间隔带”,对于所有落入到间隔带内的样本,都不计算损失;只有间隔带之外的,才计入损失函数。

之后再通过最小化间隔带的宽度与总损失来最优化模型。
在这里插入图片描述

SVR的两个松弛变量

有一点和SVM是正好相反的:SVR希望样本点都落在“隔离带”内,而SVM希望样本点都在“隔离带”外。

SVR要同时引入两个松弛变量: ξ 和 ξ ∗ ξ 和ξ^∗ ξξ
在这里插入图片描述

主问题

数学描述

在这里插入图片描述

支持向量回归Support Vector Regression, SVR)是一种基于支持向量机(Support Vector Machine, SVM)的机器学习算法,用于解决回归问题。SVRSVM在基本思想上相似,都是通过求解一个最优超平面来进行分类或回归。 SVR的目标是寻找一个超平面,使得所有样本点与该超平面之间的距离尽可能小,并且误差小于一个给定的阈值。与SVM中通过最大化间隔来确定超平面不同,SVR的目标是尽量将所有样本点落在间隔带内。 在SVR中,使用了核函数来处理非线性问题,将低维输入空间映射到高维特征空间中,通过在高维空间中构建超平面来解决线性不可分的问题。常用的核函数有线性核、多项式核和径向基核等。通过选择合适的核函数和核函数参数,可以提高回归算法的性能。 SVR的优点包括: 1. 模型具有良好的泛化能力,能够处理小样本、非线性和高维数据。 2. 可以通过调整软间隔带的宽度来控制模型的复杂度和容忍度。 3. 具有较高的训练速度和预测速度。 然而,SVR也存在一些缺点: 1. 对参数的选择敏感,需要通过交叉验证等方法进行调优。 2. 在处理大规模数据时,计算复杂度较高。 3. 对异常值比较敏感,可能会影响模型的性能。 总而言之,SVR是一种强大的回归算法,可以应用于各种回归问题。通过合理选择核函数和参数,可以提高模型对数据的拟合效果。然而,在使用SVR时需要注意参数调优和异常值处理,以提高模型的性能和稳定性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值