自然语言处理(NLP)是人工智能领域从感知智能迈向认知智能领域最关键的技术之一。
自然语言处理融合了语言学、计算机科学、人工智能等多种科学,最主要的目的是解决“让机器可以理解自然语言”的问题。
要知道,认知智能到目前为止,都还只是我们人类独有的“特权”与技能,因此,自然语言处理被誉为人工智能皇冠上的明珠。
如果想系统学习并掌握自然语言处理这一技能,在东方林语看来,需要我们从理论与实战两个维度同步努力才可以。
一、必须掌握的一些理论知识
1.必须要掌握的一些数学基础知识
具体来说主要包括:微积分、线性代数、概率论和统计学四大基础课程。尤其是需要掌握概率论、信息论、贝叶斯法则等这些最基本知识。
2.必须的机器学习知识
最优化模型是人工智能机器学习的“核心与灵魂”,几乎每个价值巨大的技术学习模型背后,本质上都是一个最优化模型。
科技抽象于生活,科技也是为了更好地服务生活。每个机器学习模型背后都是一个最优化问题。
为了寻找这个世界里的最优解,我们需要掌握最大似然估计/最大后验估计、梯度下降法等基础知识。