day4 AI面试刷题

1. 简述逻辑回归,并简述它与线性回归的关系

逻辑回归(Logistic Regression) 与 线性回归(Linear Regression) 都是一种广义线性模型(generalized linear model)。逻辑回归袈裟因变量y服从伯努利分布,而线性回归假设因变量y服从高斯分布。因此与线性回归有很多相同之处,去除Sigmoid映射函数的话,逻辑回归算法就是一个线性回归。可以说,逻辑回归是以线性回归为理论支持的,但是逻辑回归通过Sigmoid函数引入了非线性因素,因此可以轻松处理0/1分类问题。

参考 逻辑回归与线性回归是什么关系呢?


2. 回归问题常用的性能度量指标

  1. 均方误差(MSE)
    MSE(Mean Square Error):是反映估计值与被估计值之间差异程度的一种度量,公式如下:
    M S E = 1 n ∑ i = 1 n ( y i − y i ^ ) 2 \begin{aligned} MSE=\frac{1}{n}\sum^n_{i=1}(y_i-\hat{y_i})^2 \end{aligned} MSE=n1i=1n(yiyi^)2
  2. 均方根误差(RMSE)
    RMSE(Root Mean Square Error):观测值与真值偏差的平方和与观测次数n比值的平方根,用来衡量观测值同真值之间的偏差。公式如下:
    R M S E = M S E = 1 n ∑ i = 1 n ( y i − y i ^ ) 2 \begin{aligned} RMSE=\sqrt{MSE}=\sqrt{\frac{1}{n}\sum^n_{i=1}(y_i-\hat{y_i})^2} \end{aligned} RMSE=MSE =n1i=1n(yiyi^)2
  3. 和方误差(SSE)
    S S E = ∑ i = 0 n ( f ( x i ) − y i ) 2 \begin{aligned} SSE=\sum^n_{i=0}(f(x_i)-{y_i})^2 \end{aligned} SSE=i=0n(f(xi)yi)2
  4. MAE
    MAE(mean Absolute Error):计算模型输出与真实值之间的平均绝对误差。
    M A E = 1 n ∑ i = 0 n ∣ y i − y i ^ ∣ \begin{aligned} MAE=\frac{1}{n}\sum^n_{i=0}|y_i-\hat{y_i}| \end{aligned} MAE=n1i=0nyiyi^
  5. MAPE
    MAPE(Mean Absolute Percentage Error):不仅考虑预测值与真实值的误差,还考虑了误差与真实值之间的比例。
    M A P E = 1 n ∑ i = 0 n ∣ y i − y i ^ ∣ y i \begin{aligned} MAPE=\frac{1}{n}\sum^n_{i=0}\frac{|y_i-\hat{y_i}|}{y_i} \end{aligned} MAPE=n1i=0nyiyiyi^
  6. 决定系数 - coefficient of determination
    由RSS(residual sum of squares),TSS(total sum of squares)组成, y i ^ \hat{y_i} yi^表示预测值, y i ‾ \overline{y_i} yi表示均值
    R − s q u a r e d = 1 − R S S T S S R S S = ∑ i = 1 n ( y i − y i ^ ) 2 T S S = ∑ i = 1 n ( y i − y i ‾ ) 2 \begin{aligned} &R-squared=1-\frac{RSS}{TSS} \\ &RSS = \sum^n_{i=1}(y_i-\hat{y_i})^2 \\ &TSS = \sum^n_{i=1}(y_i-\overline{y_i})^2 \end{aligned} Rsquared=1TSSRSSRSS=i=1n(yiyi^)2TSS=i=1n(yiyi)2

参考 回归问题常用的性能度量指标


3. 分类问题常用的性能度量指标

准确率: A c c u r a c y = T P + T N T P + F N + F P + T N \begin{aligned} Accuracy=\frac{TP+TN}{TP+FN+FP+TN} \end{aligned} Accuracy=TP+FN+FP+TNTP+TN
精确率(查准率): P r e c i s i o n = T P T P + F P \begin{aligned} Precision=\frac{TP}{TP+FP} \end{aligned} Precision=TP+FPTP
召回率(查全率): R e c a l l = T P T P + F N \begin{aligned} Recall=\frac{TP}{TP+FN} \end{aligned} Recall=TP+FNTP
真正例率(TPR): T P R = T P T P + F N \begin{aligned} TPR=\frac{TP}{TP+FN} \end{aligned} TPR=TP+FNTP
假正例率(FPR): F P R = F P T N + F P \begin{aligned} FPR=\frac{FP}{TN+FP} \end{aligned} FPR=TN+FPFP
F1: F 1 = 2 ∗ P r e c i s i o n ∗ R e c a l l P r e c i s i o n + R e c a l l \begin{aligned} F1=\frac{2*Precision*Recall}{Precision+Recall} \end{aligned} F1=Precision+Recall2PrecisionRecall

参考 分类问题常用的性能度量指标


4. 逻辑回归的损失函数

参考 逻辑回归中的损失函数的解释


5. 逻辑回归可以处理多标签分类问题么?

参考 逻辑回归如何处理多标签分类问题

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值