【机械臂算法】基于牛顿欧拉法的闭链结构/并联机构的动力学参数辨识

针对闭链结构的机械臂,如码垛机器人,文章探讨了在参数辨识中从传统的拉格朗日法转向牛顿欧拉法建模的优势,因为牛顿欧拉法在处理闭链转化为开链问题时更高效。通过Simscape进行仿真验证,辨识过程确保了模型的准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一般来说对于机械臂中存在闭链结构的,比如一些码垛机器人,进行参数辨识的时候往往在建模的时候会使用拉格朗日法进行建模,但是拉格朗日的计算效率比较低因此最好还是使用牛顿欧拉进行建模。
使用牛顿欧拉对闭链的机械臂进行运动学建模时候,需要将闭链转化为开链。
之后的辨识思路可参考->【机械臂算法】机械臂动力学参数辨识仿真

这里使用simscape进行仿真验证。

辨识过程如下:

验证结果如下:

### 使用牛顿-欧拉方法计算6DOF机械动力学方程 #### 动力学方程推导过程 对于六自由度机械,采用牛顿-欧拉法可以高效地构建其动力学模型。此方法的核心在于递归算法的应用,即先沿链方向正向传播速度和加速度信息,再反向传递力和扭矩信息。 在具体实现过程中,需考虑各连杆之间的相对位姿关系及其对应的惯性矩阵、质心位置等物理属性[^1]。每一步迭代中,依据当前关节的角度及角速度更新末端执行器的速度与姿态;随后自末端至基座逐级累积外部作用力直至根部节点,从而获得各个关节所需的驱动力矩。 ```matlab function tau = computeTorques(q, qd, qdd) % 计算给定状态下的关节力矩 n = length(q); % 关节数目 tau = zeros(n, 1); for i = n:-1:1 % 正向遍历:计算局部坐标系下速度/加速度 ... % 反向遍历:累加全局坐标系下受力情况 ... end ``` 上述伪代码展示了如何利用循环结构完成整个求解流程。其中省略号部分代表具体的数学运算细节,涉及到了旋转和平移变换操作,以及相应的微分项处理[^4]。 #### 验证与优化建议 为了确保所开发程序的准确性,应当借助MATLAB Robotics System Toolbox或其他类似平台来进行充分测试。特别是针对不同工况设置多种输入条件组合,观察输出响应特性是否符合预期逻辑,并据此调整内部参数配置以提升数值稳定性[^5]。 此外值得注意的是,在某些特殊应用场景里可能还需要引入额外补偿机制来抵消摩擦效应等因素带来的影响,进而提高最终控制精度。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值