现代控制理论——非线性系统的lyapunov

  • 非线性系统可能存在多个局部渐进稳定的平衡态
  • 在非线性系统找李雅普诺夫函数时,要通过平移,将讨论的平衡态挪到原点

其中的三种方法主要指整理第一种

克索夫斯基法/雅可比矩阵法

  • 通过特殊函数来构造李雅普诺夫函数
  • 在这里插入图片描述
    假设:
    1)所讨论的平衡态xe=0
  1. f(x)对状态变量x连续可微
    则存在雅可比矩阵:
    在这里插入图片描述
    有克索夫斯基定理:
    在这里插入图片描述
    ※ 1. 仅为充分条件。即如果最后判断矩阵函数不为负定,也仅是不能够判断是否为渐近稳定,而不是得到系统不稳定等结果。
    ※ 2. 只有原点是系统的唯一平衡态,才能用此定理判断稳定性。并且这样判断出的一定时大范围渐近稳定。
    ※ 3. 推广到线性定常:对阵帧 A+AT(AT:A的转置) 负定,则系统的原点是大范围渐近稳定的。

例如:
在这里插入图片描述

变量梯度法/舒尔茨-吉卜生法

  • 针对特殊函数的变量梯度构造李雅普诺夫函数

系统如上,平衡点为原点
设找到判断平衡态为渐进稳定的李雅普诺夫函数为V(x),是x的显函数,而不是时间t的显函数,则有单值梯度gradV

构造方法:
1.假设V(x)的梯度为:
在这里插入图片描述
2.平衡态时V`(x)为负定,可决定部分待定参数a
3.gradV的雅可比矩阵需要为对阵矩阵,也就有如下限制条件:在这里插入图片描述
4.按式子求线积分获得V(x)
在这里插入图片描述
验证V(x)的正定性,若不正定则需要重选待定参数,直到V(x)正定
5.确定平衡态渐近稳定范围

阿依杰尔曼法/线性近似法/鲁立叶法

  • 对特殊非线性系统进行线性近似处理
    对于单值非线性函数,且始终介于平面上的两条直线
    非线性系统方程:在这里插入图片描述
    将其中 非线性函数fi(xi) 用 线性关系 βixi 进行代替
    对线性化后的系统找出其判断渐近稳定的李雅普诺夫函数:在这里插入图片描述其中P为正定,且满足在这里插入图片描述

整理自:https://wenku.baidu.com/view/a4c685bd3b3567ec112d8a68.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值