- 非线性系统可能存在多个局部渐进稳定的平衡态
- 在非线性系统找李雅普诺夫函数时,要通过平移,将讨论的平衡态挪到原点
其中的三种方法主要指整理第一种
克索夫斯基法/雅可比矩阵法
- 通过特殊函数来构造李雅普诺夫函数
假设:
1)所讨论的平衡态xe=0
- f(x)对状态变量x连续可微
则存在雅可比矩阵:
有克索夫斯基定理:
※ 1. 仅为充分条件。即如果最后判断矩阵函数不为负定,也仅是不能够判断是否为渐近稳定,而不是得到系统不稳定等结果。
※ 2. 只有原点是系统的唯一平衡态,才能用此定理判断稳定性。并且这样判断出的一定时大范围渐近稳定。
※ 3. 推广到线性定常:对阵帧 A+AT(AT:A的转置) 负定,则系统的原点是大范围渐近稳定的。
例如:
变量梯度法/舒尔茨-吉卜生法
- 针对特殊函数的变量梯度构造李雅普诺夫函数
系统如上,平衡点为原点
设找到判断平衡态为渐进稳定的李雅普诺夫函数为V(x),是x的显函数,而不是时间t的显函数,则有单值梯度gradV
构造方法:
1.假设V(x)的梯度为:
2.平衡态时V`(x)为负定,可决定部分待定参数a
3.gradV的雅可比矩阵需要为对阵矩阵,也就有如下限制条件:
4.按式子求线积分获得V(x)
验证V(x)的正定性,若不正定则需要重选待定参数,直到V(x)正定
5.确定平衡态渐近稳定范围
阿依杰尔曼法/线性近似法/鲁立叶法
- 对特殊非线性系统进行线性近似处理
对于单值非线性函数,且始终介于平面上的两条直线。
非线性系统方程:
将其中 非线性函数fi(xi) 用 线性关系 βixi 进行代替
对线性化后的系统找出其判断渐近稳定的李雅普诺夫函数:其中P为正定,且满足
整理自:https://wenku.baidu.com/view/a4c685bd3b3567ec112d8a68.html