【ASR学习笔记】:语音识别领域基本术语

一、基础术语

  1. ASR (Automatic Speech Recognition)
    • 自动语音识别,把语音信号转换成文本的技术。
  2. VAD (Voice Activity Detection)
    • 语音活动检测,判断一段音频里哪里是说话,哪里是静音或噪音。
  3. Acoustic Model(声学模型)
    • 将语音的“声音特征”映射成概率分布,用于判断每个语音片段对应的音素(发音单元)。
  4. Language Model(语言模型)
    • 通过统计词语出现的概率,帮助识别结果更符合人类语言习惯(比如纠正听成“在家”和“在加”的问题)。
  5. Decoder(解码器)
    • 把声学模型和语言模型的结果结合起来,最终输出最可能的文本。

二、特征提取相关

  1. MFCC (Mel-Frequency Cepstral Coefficients)
    • 提取语音特征的常用方法,把声音变成模型能理解的数字特征。
  2. Spectrogram(频谱图)
    • 把音频的频率成分和变化画成图像,横轴是时间,纵轴是频率。
  3. Feature Extraction(特征提取)
    • 从原始音频中提取有用的特征信息,减少无用噪声,提高识别准确率。

三、模型架构

  1. CTC (Connectionist Temporal Classification)
    • 不需要每个音频片段都标对应文字,通过序列对齐来训练模型的算法,常用于实时语音识别。
  2. Attention Mechanism(注意力机制)
    • 模型自动关注重要的信息,提高长文本或者复杂语句的识别效果。
  3. End-to-End Model(端到端模型)
    • 不用单独的声学模型、语言模型等模块,直接从音频输入到文本输出,如Transformer、Conformer模型。
  4. Conformer
    • 一种当前效果很好的语音识别模型,结合了CNN和Transformer的优点,能更好处理语音时序特征。

四、性能指标

  1. WER (Word Error Rate)

    • 词错误率,衡量识别准确性的标准。公式:

    WER = (替换 + 插入 + 删除的词数) / 总词数

    越低越好。

  2. CER (Character Error Rate)

    • 字错误率,特别适用于中文语音识别,计算每个字的错误率。

五、实用工具和算法

  1. Beam Search
    • 一种解码算法,可以找到一组可能性最高的候选文本,而不是只给出最有可能的一个结果。
  2. Greedy Search
    • 每一步都选择概率最高的输出,但不一定是全局最优结果。
  3. Punctuation Restoration(标点恢复)
    • 在识别出来的纯文本中自动加上标点符号,提高可读性。
  4. Streaming ASR(流式识别)
    • 一边听一边识别,适合实时场景,比如在线会议字幕。
  5. Offline ASR(离线识别)
    • 等完整音频上传后,再统一识别,适合语音文件转录。
  6. Hotword Boosting(热词增强)
    • 针对特定词汇(如品牌名、人名)增加模型识别的优先级。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

饭碗、碗碗香

感谢壮士的慷概解囊!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值