第3章 弥散迁移与质量传输

3.1 引言

弥散迁移﹐又称水动力弥散,研究单个流体粒子的运动速度偏离于(2.7)式所定义的平均渗流速度的效应。上一章假定所有流体粒子均以水的平均渗流速度运动。实际上,有诸多因素使单个粒子的速度不同于平均渗流速度。当存在浓度梯度时﹐溶质粒子将受到扩散作用的影响;与对流运动相比,扩散项通常很小,但当流速极低时,扩散项的影响显著。微观非均质性及孔隙结构的弯曲性也会使单个粒子的速度偏离平均渗流速度。最后还要指出﹐自然界的所有孔隙介质实际上都具有宏观非均质性,且其中大多是无法直接观测的。计算速度时我们假定水力性质是平均或总体性的;但就局部范围来说﹐速度计算时所涉及的体积之内,其渗透系数可能不同于求流速时所采用的平均值。因此宏观上讲,流体粒子的局部实际速度通常不同于由水力参数计算出的平均渗流速度。

修改标点符号

人们已经认识到野外观测的溶质运动偏离于对流计算结果的主要原因是由于宏观非均质性。然而,这些偏离理论解释上的发展,最早重点考虑的是微观或孔隙尺度﹐因为在实验装置中它们显得至关重要。本章我们将按有关概念演化的历史顺序,首先考虑微观过程。许多研究人员为建立水动力弥散理论作出了贡献,特别值得指出的有Taylor(1953 ) , Scheidegger( 1954,1958,1961 ) de Josselin de Jong (1958 ) , Saffman(1959,1960), Bear(1960,1961)以及 Bachmat和 Bear(1964)。对该理论的详细讨论可见Bear等(1968)与 Bear(1972)的著作。

3.2微观弥散过程
3.2.1 水动力弥散机制
研究图3.1所示单个孔隙中的水流运动,其流速在孔隙中心线上为最大,而在孔隙壁处为零。把尺度稍微放大,观察图3.2中所示一组孔隙的速度分布,流体粒子绕着砂粒沿弯曲的流线运动,因此流动方向从一点到另一点必然发生变化。此外,大孔隙中的流速必然大于小孔隙中的流速;同时需要考虑完全隔离的孔隙或“死端”孔隙,其中的流速为零。

 

图3.1单个孔隙中的速度变化
 

图3.2 多孔介质中微观流动路径的弯曲、分支及汇合

地下水流计算的重点不能放在这些微观流速上。(2.7)式的渗流速度和(2.8)式的达西速度虽然通常按矢量点函数处理,但实际上代表的是平均量或体积量。实际上若要确定图2.1砂段中任意小体积元的流量与流速,该体积元必须包括大量的孔隙;我们假定就流体的流量而言,该单元里的微观速度分量相互抵消,最终运动方向只有一个。在垂直于水流主方向的单位面积上体积流量就是通过该单元的达西速度﹐将其除以有效孔隙度,便得到渗流速度。
根据定义,达西速度能恰当地表达图2.1砂段中的体积流量,但渗流速度不能反映每个流体粒子的运动轨迹,也不能给出每一个粒子穿过砂段的运移时间。每个粒子通过砂段时必然经历一系列的流速;因为不同的粒子经历了不同的运动序列,其最终位置、运移时间不尽相同。
现在我们从溶质或示踪剂运动的角度来考察其意义,假定如图3.3所示,在砂段的中心设置一个含有染色剂或其他示踪物的点状源。进一步假定该点源瞬时激发,即在t。时刻脉冲发射“标记”水﹐也就是说,假定在以t。时刻为中心的很短的时间间隔内,含有示踪浓度为C。的小体积水体从横断面的中心进入水体。最后,假定示踪剂化学性质是惰性的,水动力性质与水相同,在砂段及下游断面不同点放置测量浓度的感应器。假设2.1节中的简单置换模型有效,可以预期大部分示踪剂(除了分子扩散作用以外)仍然会留在最初注入的那份水体中;并且可以预期注入的水体在砂段内沿轴线做整体运动,其形态及示踪剂浓度不发生明显变化。砂段中心线上所设置的感应器响应状态如图3.4所示;因此当“标记”水体通过时,浓度应该从零突然增加到注入浓度C,然后又迅速回复至零。观测到该浓度脉冲的时刻为t,t-t。等于d /v,其中d,为注入点到感应器的距离,v为渗流速度。而置于中心线外的感应器不应有响应。
 


图3.3 设置有示踪剂源与感应器的砂管

实际上,观察到的当然是另外一种现象。沿中心线连续设置的感应器所显示的响应如图3.5所示。随着离示踪源越来越远,最大浓度变小,而且浓度-时间曲线变宽,表明示踪剂已不再限于当初所注入的微小水体中,或者说这部分水体本身在穿过砂段时与更大体积的水相混合。浓度-时间曲线的顶点仍然代表有大量的示踪粒子到达感应器附近;但有些粒子明显到达得早些,还有一些粒子在峰值浓度之后才到达,每个感应器处均形成浓度随时间逐渐上升和下降的情形。这一现象越往下游越明显---最大浓度逐渐减小,时间响应曲线逐渐变宽。浓度峰值沿着中心线以渗流速度v移动。

图3.5在通过沿示踪剂注入点的流线上放置的一系列感应器的响应。示踪剂浓度峰值的中点
出现在tn—to+d./v,其中 d。为源到感应器的距离,v为渗流速度
 

此外中心线以外设置的感应器也会有响应,原因如图3.2所示,随着向下游距离的增大,流线不断产生分支,引起示踪剂的径向传播。注意一般情况下在中心线外任意一点,水流被单个砂粒分开,转向中心线一侧的示踪剂应该与背离中心线一侧的一样多。因此,如果我们考察垂直于水流的任意截面上的示踪剂浓度﹐最大值仍会在中心线;如图3.6所示,随着离中心线径向距离的增大,浓度平稳下降。
图3.5及图3.6所示的响应缘于不同粒子经历的运动速度不同。水流中每个粒子运动的总趋势是以(2.7)式的平均速度平行于砂管运动。可是在任一点或任一时刻,粒子的实际运动通常偏离于这一总趋势或平均状态。这意味着水流中任意一点单个流体粒子的速度可以看做是两个矢量分量之和:一为(2.7)式的平均渗流速度,一为与平均渗流速度的偏离或差异。
 

图3.6下游某点示踪剂浓度与
距管轴的径向距离的关系
 

图3.7―流体粒子速度矢量图示:v为О点的平均渗流速度矢量;v,为О点流体粒子的实际速度矢量;v'为矢量差,分量
v与o.分别为平行和垂直于v的分量
 

根据上述方法,假定图3.3所示砂中的流场稳定,渗流速度为定值或为某均一的矢量,其大小与方向处处相同。速度偏差同样是矢量,但在各点的大小与方向均不相同。为简化研究,假定这个差异矢量总是二维的—即可以用两个分量来描述;一为水流方向的纵向分量,一为垂直水流方向的横向分量。图3.7示意了此两分量合成的差异矢量,以及差异矢量与渗流速度相加得到的粒子速度矢量。由于该问题属于稳定流,控制单个粒子速度的任何过程都只是孔隙位置的函数;如果我们能够知道详细的孔隙结构及其特征,就能够像计算均一的平均渗流速度一样计算图3.7中任一点的差异矢量分量。这意味着从理论上可以计算流体中每个粒子的实际速度序列,因此也可以全面地描述在初始释放后任一时刻的示踪剂分布状态。
现实中往往无法确定详细的孔隙结构以及孔隙结构是如何影响单个粒子的速度的。因此,作为替代办法可以把图3.7中的差异矢量当做随机变量;从概率的角度可以知道在空间某一点该项会落在某个范围内。更具体地来说,我们可以把差异矢量的纵向分量和横向分量视为两个不相关的随机量,原因是引起纵向速度偏差的因素可能与引起横向速度分量偏差的因素不同。鉴于孔隙介质对每个流体粒子会施加一系列确定的速度﹐或者可以把它们视为一系列偏离渗流速度的确定偏差,我们在模型中设其为一系列相对于渗流速度的随机偏离。对于砂段中一个体积足够大的样本,假设根据这种方法生成的矢量场能模拟砂中的真实流速分布﹐或至少达到与示踪剂迁移的最终效果相同的程度。
实际上这把示踪剂迁移问题分为了两部分:由(2.7)式的渗流速度描述的运动,以及这个运动的随机偏离。第一部分为对流迁移,在前面已介绍过;第二部分称为水动力弥散或弥散迁移。因此实际的示踪剂迁移为这两部分之和(图3.8)。注意水动力弥散通常作为一个集总项,是前面介绍的由于流体速度变化引起的机械弥散和下节介绍的分子扩散的综合。虽然习惯上把弥散视为一种迁移过程,但其物理机制主要是对流,反映溶解物质由于流体速度变化产生的运动。分子扩散促进了弥散迁移,在某种程度上弥散迁移确实表示一种独立的迁移过程。考虑到隐性的流体速度变化对观测现象的影响,把弥散迁移视为调整对流迁移计算的一种方法更为确切,弥补了现在已经认识到的刻画速度场中的不足。
 

3.2.2弥散迁移与分子扩散的类比
正如我们已经认识到的,分子扩散是一个促进弥散运动的过程。然而此处研究分子扩散另有原因;用随机运动表示弥散迁移可以直接类比于经典扩散理论中描述的扩散迁移。下面的讨论将用这种类比法建立对弥散迁移概念的一般认识。
经典扩散模型认为流动系统内的所有离子或分子都在做随机运动(例如, Scheide-gger,1974;Cussler,1997) ,这种随机运动发生在某种溶解物质存在浓度梯度时,并最终导致该物质的流动通量或迁移。例如图3.9(a)所示的系统;容器由可以移动的不透水隔板分成两部分。隔板一侧为蒸馏水,另一侧为盐溶液(咸水)。这两种液体液面位置相同,假定它们之间的密度差可以忽略。咸水的初始盐浓度为C。。隔板两侧的水分子和咸水一侧中的盐离子由于液体的热能做随机运动。
在某一时刻去掉隔板,如图3.9(b)所示,这个时刻在隔板腾空的区域有很大的浓度梯度﹐在咸水一侧为Co ,蒸馏水一侧为零。盐离子在这个区域随机运动,一部分离子从咸水一侧进入蒸馏水一侧。穿越该边界的离子数目是浓度差的函数;若边界上的初始盐浓度高,在很短的时间内大量离子将通过随机运动穿越边界;初始浓度较低时,在给定时间内发生移动的离子要少些。无论是哪种情况经过较短时间后,扩散作用会使较大的浓度梯度降低,得到图3.9(c)中所示的更缓和的过渡。此时原先隔板边界处的浓度差更小。在浓度降低方向做随机运动的盐离子更少,一些离子反向穿过边界,因此在浓度减小的方向上,净离子迁移量小于图3.9(b)所示情况。图3.9(d)表示扩散作用最终使容器中的液体盐浓度均一。这时浓度处处相同,盐离子在各个方向上的随机运动数目一样多,原隔板界面处没有净迁移量。
 

图3.9离子扩散实验示意图
(a)容器中被一个可移动的隔板分隔的盐溶液与蒸馏水;(b)抽去隔板瞬间的离子分布状态;
(c)抽去隔板后,t时刻的离子分布状态;(d)离子最终分布状态
 

图3.10说明经典扩散理论(Fick扩散定律)如何处理上面的问题。隔板的面积为A,厚度为△l。假定任意时刻越过该界面的扩散迁移项与界面两侧的浓度差及面积A成正比,与分隔距离△l成反比。其比例常数称为分子扩散系数D。△l两侧的浓度分别为C与C:;因为图中的l以向右为正,浓度差记为C2一C。因此扩散迁移表达式记为:
 

其中F的量纲为单位时间的质量(MT-'),表示盐离子通过面积A从C侧到C侧的迁移速率;负号表示迁移向浓度降低方向进行。(C一C)/△l项是浓度梯度的近似表达式。这个方程说明浓度梯度越陡,即单位距离上的浓度变化越大,扩散迁移量越大。采用微分形式并在(3.1)式两边同除以面积A,可记为:

其中F。为扩散质量通量,表示单位时间单位面积上的质量(量纲为MT-'L-3)。(3.1)式和(3.2)式是自由溶液中Fick扩散定律的表达式(Cussler,1997)。我们看出扩散迁移的必要条件是浓度梯度出现时的随机运动和图3.3砂中示踪剂弥散迁移模型的机制相同。通过扩散现象与弥散现象的类比,在流动的液体中可以将扩散迁移与流体速度引起的迁移相叠加,正如我们所构想的将弥散迁移叠加到与渗流速度相关的对流迁移中(图3.11)。


通过以上讨论,我们可以调整扩散的数学表达式来描述孔隙介质中的水动力弥散过程。类比于扩散﹐假定孔隙介质中的弥散迁移与浓度梯度及截面积的乘积成正比。也就是说假定垂直于纵向的单位面积上的弥散迁移与浓度梯度的纵向分量成正比,相似地﹐与横向垂直的单位面积上的弥散迁移与浓度梯度的横向分量成正比。然而,我们假定这两个方向上有不同的比例系数﹐以反映引起纵向弥散的因素也许不同于横向弥散的推断。在处理水动力弥散与静止液体的扩散时还有一个明显的差别。我们假定弥散迁移在纵向与横向都与渗流速度矢量的大小成正比。这服从我们所假定的弥散迁移是由单个粒子的速度与渗流速度的累积差异引起的。若水流系统的总速度增大,单个粒子的速度与渗流速度的差值也增大,弥散迁移作用更明显。
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

___Y1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值