ChemLLM:化学领域的大模型

人工智能咨询培训老师叶梓 转载标明出处

在化学这一特定学科的应用上,一直缺乏专门的对话模型。化学数据和科学知识通常存储在结构化的数据库中,这给直接使用这些数据训练语言模型带来了挑战。为了解决这一问题,来自上海人工智能实验室的研究团队及其合作者们开发了一种基于模板的指令构建方法,将结构化知识转化为适合语言模型训练的自然对话形式。

ChemLLM 的开发,填补了化学领域对话模型的空白。它不仅在化学任务上表现出色,如分子属性预测、分子生成和实验方案设计等,还在数学和物理等相关领域展现了出色的适应性。ChemLLM 在化学核心任务上超越了 GPT-3.5,并在其中两个任务上超越了 GPT-4。

开发化学领域大型语言模型(ChemLLM)所面临的挑战以及解决方案

ChemLLM 的开发过程中,研究团队面临了将化学领域的结构化数据转化为自然语言以供语言模型训练的挑战。为了应对这一挑战,他们创造了 ChemData,这是一个合成的化学指令调整数据集,它构成了训练 ChemLLM 的基础。

ChemData 和 ChemBench 的数据信息

Ch

### 使用大模型预测SMILES字符串代表的化学物质特性 对于利用大型语言模型(LLMs)来预测基于简化分子线性输入系统(SMILES)表示法的分子性质,可以采用专门训练过的化学领域的大规模语言模型(ChemLLM),这类模型在处理化学特定的任务方面表现出显著的优势[^2]。 #### 准备工作 为了实现这一目标,首先需要准备环境并加载必要的库。通常情况下会依赖于一些开源工具包如RDKit用于解析和操作SMILES字符串以及转换成其他格式;Hugging Face Transformers则提供了访问预训练好的大规模语言模型的能力。 ```python from rdkit import Chem from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer import torch ``` #### 加载预训练模型 选择一个适合做化学属性预测任务的预训练模型非常重要。这里假设已经有一个针对此目的优化过并且公开可用的模型存在: ```python model_name = "path_to_pretrained_chem_model" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForTokenClassification.from_pretrained(model_name).to('cuda' if torch.cuda.is_available() else 'cpu') nlp = pipeline("token-classification", model=model, tokenizer=tokenizer, device=0 if torch.cuda.is_available() else -1) ``` #### 输入与处理 接下来定义要分析的目标化合物,并将其编码为模型能够理解的形式。这一步骤涉及到将SMILES字符串转化为可用于推理的数据结构。 ```python smiles_string = "CCO" # 示例乙醇的SMILES表达式 mol = Chem.MolFromSmiles(smiles_string) if mol is not None: result = nlp(mol.ToBinary()) else: raise ValueError("Invalid SMILES string provided.") ``` #### 解析输出结果 最后一步是从返回的结果集中提取有用的信息,比如物理化学性质或其他感兴趣的特征。具体取决于所使用的模型及其设计意图。 ```python for res in result: print(f"{res['entity']}: {res['score']}") # 假设实体标签对应某些类型的分子特性描述符 ``` 上述过程展示了如何使用专门为化学应用定制化的大型语言模型来进行简单的分子特性的预测。值得注意的是,在实际部署之前还需要考虑更多因素,例如数据集的质量控制、模型的选择依据等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

人工智能大模型讲师培训咨询叶梓

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值