ChemReasoner——基于量子化学与大语言模型(LLM) 发现最佳催化剂的框架并提高催化剂发现的效率

摘要

论文地址:https://arxiv.org/abs/2402.10980
源码地址:https://github.com/pnnl/chemreasoner

为了发现新催化剂,有必要找到化学描述符(特性)的最佳组合。然而,这些往往是基于经验法则。化学家们在头脑中推理反应物、催化剂和操作条件的组合,以实现更节能的化学转化。在一项研究(Nørskov 等人,2011 年)中,利用化学描述符将微观表面性质与宏观催化性能联系起来,被认为是快速提出新假设的关键。

大型语言模型可以实现这种数据驱动的自主探索,加速科学发现。本文旨在利用量子化学反馈增强自然语言推理能力,以发现目标反应的最佳催化剂。

要对复杂的催化过程进行推理,除了现有的语言模型外,还需要具备以多种模式进行建构的能力。这包括文献中的科学概念和三维原子结构的预测。要确定最佳催化剂,需要对多种宏观特性进行推理。第一步是确定与反应相关的化学描述符(如 “抗中毒性”、“多孔性”)的最佳组合。这就需要对无数可能的组合进行推理,并需要一个外部推理器,如大型语言模型。大型语言模型利用科学概念知识提出关键属性,并选择具有这些属性的最佳催化剂。为了缩小候选催化剂的巨大空间,需要对三维空间中原子结构之间的复杂相互作用进行推理。此外,简单反应可以通过三维化学结构的吸附能进行评估,而复杂反应则需要考虑多步反应途径和选择性。

为了应对这一挑战,本文提出了一个框架,将大规模语言模型驱动的启发式搜索与基于结构的评分相结合,并使用从量子化学模拟中训练出来的原子结构图神经网络(GNN)。

该框架将催化剂发现描述为一种不确定的环境,在这种环境中,代理(LLMs)根据计算化学反馈来追求能量上有利的催化作用。

在搜索的每一步,代理都会(1) 自动识别需要考虑的最佳特征集,(2) 根据识别的特征生成新的搜索提示,(3) 根据高级指令执行提示。

在每个步骤中确定的候选催化剂都会转换成催化剂-吸附剂结构的三维原子表征,该表征会评估催化剂的空间取向、反应途径中的能量障碍以及稳定性,从而产生催化剂适用性奖励。这种奖励促使大规模语言模型向能以最小外部能量进行反应的催化剂方向发展。这是开发环境友好型工业流程的重要一步。

本文介绍了一个新颖的假设生成和测试框架–ChemReasoner,它将大规模语言模型的知识空间与基于量子化学的反馈整合在一起。该框架可实现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

知来者逆

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值