人工智能咨询培训老师叶梓 转载标明出处
在构建基于大模型(LLM)的生成式问答系统(Generative Q&A)时,检索增强生成(Retrieval-Augmented Generation, RAG)方法被广泛采用。RAG通过结合检索器(Retriever)和生成器(Generator)来实现,其中检索器负责从大量文档中提取最相关的信息,为语言模型提供上下文支持。然而,随着文档库规模的扩大,RAG的准确性面临挑战。IBM的研究人员提出了一种名为“Blended RAG”的新方法,通过利用语义搜索技术以及混合查询策略,显著提高了RAG的检索准确性,并在多个信息检索(IR)数据集上设立了新的基准。
方法
提升RAG系统的性能有三种不同的搜索策略。包括基于关键词的相似性搜索、基于密集向量的搜索,以及基于语义的稀疏编码器搜索。这些策略被整合到混合查询中,与传统的关键词匹配不同,语义搜索深入挖掘用户查询的细微差别,解读上下文和意图。
-
BM25索引:BM25索引擅长利用全文搜索能力,并增强了模糊匹配技术,为更复杂的查询操作奠定了基础。
-
密集向量索引:构建了一个由句子转换器支持的密集向量索引。它通过文档和查询内容派生的向量表示来识别向量之间的接近程度。
-
稀疏编码器索引:稀疏编码器检索模型索引结合了语义理解和基于相似度的检索,以捕捉术语之间细微的关系,从而更真实地表示用户意图和文档的相关性。
研究的方法论是分阶段进行的,首先在BM25索引中进行基本的匹配查询。然后,研究者们升级到混合查询,这些查询结合了多个字段中的不同搜索技术,利用稀疏编码器基础索引中的多匹配查询。当文档库中查询文本的确切位置不确定时,这种方法非常有效,确保了全面的匹配检索。多匹配查询分为以下几类:
- Cross Fields:针对多个字段的一致性。
- Most Fields:通过不同视角在各个字段中寻找文本表示。
- Best Fields:在单一字段内追求词的聚合。
- Phrase Prefix:类似于Best Fields,但优先考虑短语而非关键词。
在完成初步的匹配查询之后,研究人员进一步整合了基于密集向量的方法(KNN)和稀疏编码器索引。针对每种索引技术,他们都设计了专门的混合查询策略。通过这种策略性的方法