人工智能咨询培训老师叶梓 转载标明出处
多模态学习正成为连接不同类型数据(如图像、文本、音频等)的桥梁。随着深度学习技术的发展,多模态模型在理解和处理跨领域数据方面表现出了显著的效能。来自普渡大学、混沌工业公司、斯坦福大学和亚马逊的研究人员共同撰写了一篇论文,题为《多模态模型架构的演进》(The Evolution of Multimodal Model Architectures),该论文系统地识别并描述了当代多模态领域中普遍存在的四种多模态模型架构模式。
四种多模态模型架构
图1展示了四种不同的多模态架构类型及其子类型。两种总体类别分别是:深度融合(Deep Fusion),在模型的内部层次中发生模态的融合;以及早期融合(Early Fusion),以模型输入阶段的模态融合为特征。每种类别中又观察到两个主要的集群。在深度融合领域中,模态与内部层次的整合体现在:类型A(Type-A)采用标准的交叉注意力层,而类型B(Type-B)则使用定制设计层。相反,在早期融合领域中,多模态输入主要有两种形式:非标记化的多模态输入作为类型C(Type-C),以及离散标记化的多模态输入作为类型D(Type-D)。
想要掌握如何将大模型的力量发挥到极致吗?叶老师带您深入了解 Llama Factory —— 一款革命性的大模型微调工具(限时免费)。<