多模态模型架构的演进

人工智能咨询培训老师叶梓 转载标明出处

多模态学习正成为连接不同类型数据(如图像、文本、音频等)的桥梁。随着深度学习技术的发展,多模态模型在理解和处理跨领域数据方面表现出了显著的效能。来自普渡大学、混沌工业公司、斯坦福大学和亚马逊的研究人员共同撰写了一篇论文,题为《多模态模型架构的演进》(The Evolution of Multimodal Model Architectures),该论文系统地识别并描述了当代多模态领域中普遍存在的四种多模态模型架构模式。

四种多模态模型架构

图1展示了四种不同的多模态架构类型及其子类型。两种总体类别分别是:深度融合(Deep Fusion),在模型的内部层次中发生模态的融合;以及早期融合(Early Fusion),以模型输入阶段的模态融合为特征。每种类别中又观察到两个主要的集群。在深度融合领域中,模态与内部层次的整合体现在:类型A(Type-A)采用标准的交叉注意力层,而类型B(Type-B)则使用定制设计层。相反,在早期融合领域中,多模态输入主要有两种形式:非标记化的多模态输入作为类型C(Type-C),以及离散标记化的多模态输入作为类型D(Type-D)。

想要掌握如何将大模型的力量发挥到极致吗?叶老师带您深入了解 Llama Factory —— 一款革命性的大模型微调工具(限时免费)。<

### 多模态大模型 VLLM 介绍 VLLM 是一种专注于多模态处理的大规模预训练模型,旨在融合多种数据形式(如文本、图像、音频等),从而提供更加全面和深入的数据理解能力。该模型不仅能够处理单一类型的输入,还能跨不同媒体类型进行联合建模。 #### 特点 1. **高效推理加速** 参数量控制在约2000万以内,显著减少了计算资源消耗并提高了运行效率[^1]。这种设计使得即使是在边缘设备或移动端也能流畅执行复杂的AI任务。 2. **强大的泛化能力** 能够有效捕捉不同类型数据之间的内在联系,在面对未曾见过的新颖组合时仍能保持较高的准确性与鲁棒性。 3. **支持具身智能发展** 尽管当前大多数多模态大型语言模型仍然处于相对静态的状态,但像MobileVLM这样的架构已经开始尝试向更具交互性和适应性的方向演进,这对于推动AGI的发展具有重要意义。 4. **易于集成的小模型协同工作框架** 结合特定领域内的小型专用网络共同构建解决方案,可以更好地满足实际应用场景中的多样化需求,降低实施难度的同时提高整体系统的灵活性和可维护性[^2]。 #### 应用案例 - **智能家居控制系统** 利用视觉识别技术配合自然语言处理功能来增强用户体验;例如,用户可以通过语音指令让系统识别人脸并自动解锁门禁。 - **医疗影像辅助诊断** 整合X光片、CT扫描等多种医学成像资料以及病历记录,帮助医生做出更为精准的判断。 - **自动驾驶汽车感知模块** 同步分析摄像头视频流与其他传感器采集到的信息,确保车辆能够在复杂环境中安全行驶。 ```python import torch from transformers import AutoModelForVisionTextDualEncoder, AutoFeatureExtractor, AutoTokenizer def load_vllm_model(): model_name = "nlpconnect/vit-gpt2-image-captioning" feature_extractor = AutoFeatureExtractor.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForVisionTextDualEncoder.from_pretrained(model_name) return model, feature_extractor, tokenizer model, fe, tk = load_vllm_model() print("Loaded VLLM Model Successfully!") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

人工智能大模型讲师培训咨询叶梓

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值