文章目录
- 第一部分
-
-
- 1. SimAM 注意力模块
-
- 1.1 原理
- 1.2 C3_SimAM 代码
- 2. CoTAttention 注意力模块
-
- 2.1 原理
- 2.2 C3_CoT 代码
- 3. SKAttention 注意力模块
-
- 3.1 原理
- 3.2 C3_SK 代码
- 4. DoubleAttention 注意力模块
-
- 4.1 原理
- 4.2 C3_Double 代码
-
- 第二部分
-
-
- 1. EffectiveSE 注意力模块
-
- 1.1 原理
- 1.2 C3_EffectiveSE 代码
- 2. GlobalContext 注意力模块
-
- 2.1 原理
- 2.2 C3_GlobalContext 代码
- 3. GatherExcite 注意力模块
-
- 3.1 原理
- 3.2 C3_GatherExcite 代码
- 4. MHSA 注意力模块
-
- 4.1 原理
- 4.2 C3_MHSA 代码
-
- 第三部分
-
-
- 1. Triplet 注意力模块
-
- 1.1 原理
- 1.2 C3_Triplet 代码
- 2. SpatialGroupEnhance 注意力模块
-
- 2.1 原理
- 2.2 C3_SpatialGroupEnhance 代码
- 3. NAM 注意力模块
-
- 3.1 原理
- 3.2 C3_NAM 代码
- 4. S2 注意力模块
-
- 4.1 原理
- 4.2 C3_S2 代码
- 5. 添加方式
- 6. C3_Attention 结构图
-
第一部分
1. SimAM 注意力模块
论文名称:《SimAM: A Simple, Parameter-Free Attention Module for Convolutional Neural Networks》
论文地址:http://proceedings.mlr.press/v139/yang21o/yang21o.pdf
代码地址:https://github.com/ZjjConan/SimAM
1.1 原理
在这篇论文中,我们提出了一个概念上简单但非常有效的注意力模块,用于卷积神经网络。与现有的基于通道和空间的注意力模块不同,我们的模块通过推断特征图中的三维注意力权重来工作,而无需向原始网络添加参数。具体而言,我们基于一些著名的神经科学理论,并提出了优化能量函数以找到每个神经元重要性的方法。我们进一步推导了能量函数的快速闭合形式解,并展示了该解可以用不到十行代码实现。该模块的另一个优点是,大多数运算符是基于定义的能量函数解的选择,避免了过多的结构调整的工作。对各种视觉任务的定量评估表明,所提出的模块具有灵活性和有效性,可以提高许多ConvNets
的表征能力。