YOLOv5改进系列(二十七) 在 C3 模块中添加 12 种注意力机制C3_SimAM, C3_CoT, C3_Double, C3_SK, C3_EffSE, C3_GatherE等

文章目录

  • 第一部分
      • 1. SimAM 注意力模块
        • 1.1 原理
        • 1.2 C3_SimAM 代码
      • 2. CoTAttention 注意力模块
        • 2.1 原理
        • 2.2 C3_CoT 代码
      • 3. SKAttention 注意力模块
        • 3.1 原理
        • 3.2 C3_SK 代码
      • 4. DoubleAttention 注意力模块
        • 4.1 原理
        • 4.2 C3_Double 代码
  • 第二部分
      • 1. EffectiveSE 注意力模块
        • 1.1 原理
        • 1.2 C3_EffectiveSE 代码
      • 2. GlobalContext 注意力模块
        • 2.1 原理
        • 2.2 C3_GlobalContext 代码
      • 3. GatherExcite 注意力模块
        • 3.1 原理
        • 3.2 C3_GatherExcite 代码
      • 4. MHSA 注意力模块
        • 4.1 原理
        • 4.2 C3_MHSA 代码
  • 第三部分
      • 1. Triplet 注意力模块
        • 1.1 原理
        • 1.2 C3_Triplet 代码
      • 2. SpatialGroupEnhance 注意力模块
        • 2.1 原理
        • 2.2 C3_SpatialGroupEnhance 代码
      • 3. NAM 注意力模块
        • 3.1 原理
        • 3.2 C3_NAM 代码
      • 4. S2 注意力模块
        • 4.1 原理
        • 4.2 C3_S2 代码
      • 5. 添加方式
      • 6. C3_Attention 结构图


第一部分


1. SimAM 注意力模块

论文名称:《SimAM: A Simple, Parameter-Free Attention Module for Convolutional Neural Networks》

论文地址:http://proceedings.mlr.press/v139/yang21o/yang21o.pdf

代码地址:https://github.com/ZjjConan/SimAM

1.1 原理

在这篇论文中,我们提出了一个概念上简单但非常有效的注意力模块,用于卷积神经网络。与现有的基于通道和空间的注意力模块不同,我们的模块通过推断特征图中的三维注意力权重来工作,而无需向原始网络添加参数。具体而言,我们基于一些著名的神经科学理论,并提出了优化能量函数以找到每个神经元重要性的方法。我们进一步推导了能量函数的快速闭合形式解,并展示了该解可以用不到十行代码实现。该模块的另一个优点是,大多数运算符是基于定义的能量函数解的选择,避免了过多的结构调整的工作。对各种视觉任务的定量评估表明,所提出的模块具有灵活性和有效性,可以提高许多ConvNets的表征能力。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小酒馆燃着灯

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值