2019-11-10 秩和奇异的一些概念

  • 若方阵 A \boldsymbol A A为奇异,则存在某个非零 n n n维常值列向量 α \boldsymbol \alpha α,使得 α T A α = 0 \boldsymbol \alpha^T\boldsymbol A\boldsymbol \alpha=0 αTAα=0
  • 若存在 α 1 × n Q n × m = 0 \boldsymbol \alpha_{1×n}\boldsymbol Q_{n×m}=\boldsymbol0 α1×nQn×m=0,当 α 1 × n ≠ 0 \boldsymbol \alpha_{1×n}\neq \boldsymbol0 α1×n=0,则可以得出 Q n × m \boldsymbol Q_{n×m} Qn×m为行线性相关,即 r a n k Q n × m < n \mathrm {rank} \boldsymbol Q_{n×m}<n rankQn×m<n;反之,若 Q n × m \boldsymbol Q_{n×m} Qn×m为行线性相关,则存在非零常数行向量 α 1 × n \boldsymbol \alpha_{1×n} α1×n,使得 α 1 × n Q n × m = 0 \boldsymbol \alpha_{1×n}\boldsymbol Q_{n×m}=\boldsymbol0 α1×nQn×m=0
  • r a n k ( A + B ) ≤ r a n k A + r a n k B \mathrm {rank} (\boldsymbol A+\boldsymbol B)≤\mathrm {rank} \boldsymbol A+\mathrm {rank} \boldsymbol B rank(A+B)rankA+rankB
  • r a n k ( A B ) ≤ min ⁡ ( r a n k A , r a n k B ) \mathrm {rank} (\boldsymbol A\boldsymbol B)≤\min(\mathrm {rank} \boldsymbol A, \mathrm {rank} \boldsymbol B) rank(AB)min(rankA,rankB)
  • P \boldsymbol P P Q \boldsymbol Q Q可逆, r a n k ( P A ) = r a n k ( A Q ) = r a n k ( A ) \mathrm {rank} (\boldsymbol P\boldsymbol A)=\mathrm {rank} (\boldsymbol A\boldsymbol Q)=\mathrm {rank} (\boldsymbol A) rank(PA)=rank(AQ)=rank(A),是因为可逆阵是满秩的,均等价于单位阵,即由单位阵初等变换而来,所以不改变 r a n k ( A ) \mathrm {rank} (\boldsymbol A) rank(A)
  • r a n k ( A n × m B m × l ) ≥ r a n k A + r a n k B − m \mathrm {rank} (\boldsymbol A_{n×m}\boldsymbol B_{m×l})≥\mathrm {rank} \boldsymbol A+\mathrm {rank} \boldsymbol B-m rank(An×mBm×l)rankA+rankBm(即将 A \boldsymbol A A m m m个列线性组合 l l l次)
  • A m × n x n × 1 = 0 \boldsymbol A_{m×n}\boldsymbol x_{n×1}=\boldsymbol 0 Am×nxn×1=0有非零解 等价于 r a n k ( A ) < n \mathrm {rank} (\boldsymbol A) <n rank(A)<n(即 A \boldsymbol A A的各个列是线性相关的)
  • A m × n x n × 1 = b \boldsymbol A_{m×n}\boldsymbol x_{n×1}=\boldsymbol b Am×nxn×1=b有解 等价于 r a n k ( A ) = r a n k ( A , b ) \mathrm {rank} (\boldsymbol A) = \mathrm {rank} (\boldsymbol A,\boldsymbol b) rank(A)=rank(A,b)
  • 列满秩 N \boldsymbol N N,对称正定阵 A \boldsymbol A A,则 N T A N \boldsymbol N^T\boldsymbol A\boldsymbol N NTAN为对称正定
  • A m × n \boldsymbol A_{m×n} Am×n的秩为 n n n,则 A T A \boldsymbol A^T\boldsymbol A ATA是正定对称阵(用正定二次型的定义证明: A m × n x n × 1 \boldsymbol A_{m×n}\boldsymbol x_{n×1} Am×nxn×1表示 A \boldsymbol A A的各个列的线性组合,当其线性无关时,只有当 x = 0 \boldsymbol x=\boldsymbol 0 x=0,乘积才会为 0 \boldsymbol 0 0,因此列满秩时,只要 x ≠ 0 \boldsymbol x\neq\boldsymbol 0 x=0,乘积就不会是 0 \boldsymbol 0 0,二次型为 f = x T A T A x = ( A x ) T A x > 0 f=\boldsymbol x^T\boldsymbol A^T\boldsymbol A\boldsymbol x=(\boldsymbol A\boldsymbol x)^T\boldsymbol A\boldsymbol x>0 f=xTATAx=(Ax)TAx>0
  • 对称正定*对称正定的乘积的特征值均正
  • 任意矩阵左乘列满秩或者右乘行满秩,不改变原来的秩(设 A m × n \boldsymbol A_{m×n} Am×n的秩为 n n n,对于 B n × l \boldsymbol B_{n×l} Bn×l,则有, r a n k ( A B ) ≥ r a n k ( A T A B ) = r a n k ( B ) \mathrm {rank} (\boldsymbol {AB})≥\mathrm {rank} (\boldsymbol {A^TAB})=\mathrm {rank} (\boldsymbol {B}) rank(AB)rank(ATAB)=rank(B),同时 r a n k ( A B ) ≤ r a n k ( B ) \mathrm {rank} (\boldsymbol {AB})≤\mathrm {rank} (\boldsymbol {B}) rank(AB)rank(B),即 r a n k ( A B ) = r a n k ( B ) \mathrm {rank} (\boldsymbol {AB})=\mathrm {rank} (\boldsymbol {B}) rank(AB)=rank(B),任意矩阵左乘列满秩不改变原来的秩)
  • 如果 A B \boldsymbol A\boldsymbol B AB是满秩的,则前一个是行满秩,后一个是列满秩。
  • A m × n \boldsymbol A_{m×n} Am×n B n × m \boldsymbol B_{n×m} Bn×m A B \boldsymbol {AB} AB A B \boldsymbol {AB} AB具有相同的非零特征值,证明.
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DR-ZF-

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值