2020-11-30 离散系统自适应控制中的一个关键性引理及证明

在这里插入图片描述

Assumption:

the expressions are all meaningful, i.e., there exists no case that division by zero.

Proof.

If { s ( t ) } \{s(t)\} {s(t)} is a bounded sequence, then by (3), { ∥ σ ( t ) ∥ } \{\|\sigma(t)\|\} {σ(t)} is a bounded sequence. Then by ( 1 ) (1) (1) and ( 2 ) (2) (2) it follows that
lim ⁡ t → ∞ ∥ s ( t ) ∥ = 0 \lim _{t \rightarrow \infty} \|s(t)\|=0 tlims(t)=0

Now assume that { ∥ s ( t ) ∥ } \{\|s(t)\|\} {s(t)} is unbounded. It follows that there exists a subsequence { t n } \left\{t_{n}\right\} {tn} such that
lim ⁡ t n → ∞ ∥ s ( t n ) ∥ = ∞ \lim _{t_{n} \rightarrow \infty}\|s\left(t_{n}\right)\|=\infty tnlims(tn)=and
∥ s ( t ) ∥ ≤ ∥ s ( t n ) ∥  for  t ≤ t n \|s(t)\| \leq\|s\left(t_{n}\right)\| \quad \text { for } t \leq t_{n} s(t)s(tn) for ttn
Now along the subsequence { t n } \left\{t_{n}\right\} {tn}
[ s ( t n ) T s ( t n ) ] 1 / 2 [ b 1 ( t n ) + b 2 ( t n ) σ ( t n ) T σ ( t n ) ] 1 / 2 ≥ ∥ s ( t n ) ∥ [ K + K ∥ σ ( t n ) ∥ 2 ] 1 / 2 ≥ ∥ s ( t n ) ∥ K 1 / 2 + K 1 / 2 ∥ σ ( t n ) ∥ ≥ ∥ s ( t n ) ∥ K 1 / 2 + K 1 / 2 [ C 1 + C 2 ∥ s ( t n ) ∥ ] \begin{aligned} \frac{\left[s\left(t_{n}\right)^{T}s\left(t_{n}\right)\right]^{1 / 2}}{\left[b_{1}\left(t_{n}\right)+b_{2}\left(t_{n}\right) \sigma\left(t_{n}\right)^{T} \sigma\left(t_{n}\right)\right]^{1 / 2}} & \geq \frac{\left\|s\left(t_{n}\right)\right\|}{\left[K+K \| \sigma\left(t_{n}\right)\|^{2}\right]^{1 / 2}} \\ & \geq \frac{\left\|s\left(t_{n}\right)\right\|}{K^{1 / 2}+K^{1 / 2}\| \sigma\left(t_{n}\right) \|} \\ & \geq \frac{\left\|s\left(t_{n}\right)\right\|}{{K^{1 / 2}}+K^{1 / 2}\left[C_{1}+C_{2}\left\|s\left(t_{n}\right)\right\|\right]} \end{aligned} [b1(tn)+b2(tn)σ(tn)Tσ(tn)]1/2[s(tn)Ts(tn)]1/2[K+Kσ(tn)2]1/2s(tn)K1/2+K1/2σ(tn)s(tn)K1/2+K1/2[C1+C2s(tn)]s(tn)
Hence, when t n t_n tn approaches infinity, we have
[ s ( t n ) T s ( t n ) ] 1 / 2 [ b 1 ( t n ) + b 2 ( t n ) σ ( t n ) T σ ( t n ) ] 1 / 2 ≥ 1 K 1 / 2 C 2 > 0 \frac{\left[s\left(t_{n}\right)^{T}s\left(t_{n}\right)\right]^{1 / 2}}{\left[b_{1}\left(t_{n}\right)+b_{2}\left(t_{n}\right) \sigma\left(t_{n}\right)^{T} \sigma\left(t_{n}\right)\right]^{1 / 2}} \geq \frac{1}{K^{1 / 2} C_{2}}>0 [b1(tn)+b2(tn)σ(tn)Tσ(tn)]1/2[s(tn)Ts(tn)]1/2K1/2C21>0
but this contradicts (1) and hence the assumption that { ∥ s ( t ) ∥ } \{\|s(t)\|\} {s(t)} is unbounded is false and the result follows.

The proof is complete.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DR-ZF-

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值