20220323 Bode图背后的信息

一、Bode图

注意:Bode图指的是利用开环系统的Bode图反应闭环的性质;开环增益指的是尾1形式;低频、中频、高频没有严格的区分。

在这里插入图片描述

二、稳定裕度、频段

  1. 稳定裕度:
    a. 相角裕度:截止频率 ω c \omega_c ωc(0 dB)对应的 -180°以上的相角。如果再滞后这个角度,系统将进入临界稳定或者不稳定状态(最后一次穿越 0 dB);
    b. 幅值裕度:相角为 -180° 的频率 ω g \omega_g ωg 对应的 0 dB以下的增益。如果再提高这么多开环增益,系统将进入临界稳定或者不稳定状态(第一次穿越 180°)。
    记忆要点:开环增益是1的时候,滞后不能超过180°,否则就完全相反了。滞后180°的时候,增益不能大于1,否则就完全相反了。
  2. 低频段:反映系统稳态误差。
    低频段: ω \omega ω接近0,考虑尾1式,特性由积分环节开环增益决定。
    G d ( s ) = K s v G_d(s)=\frac{K}{s^{v}} Gd(s)=svK
    对数幅频特性
    20 lg ⁡ ∣ G d ( j ω ) ∣ = 20 lg ⁡ K ω v = 20 lg ⁡ K + v ( − 20 lg ⁡ ω ) 20 \lg \left|G_{d}(j \omega)\right|=20 \lg \frac{K}{\omega^{v}}=20 \lg K + v \left( -20 \lg \omega \right) 20lgGd()=20lgωvK=20lgK+v(20lgω)
    结论:
    a. 越陡峭,积分环节越多。一个 -20 dB/sec 代表一个积分环节,比如 -40 dB/sec 就是2型系统,-60 dB/sec 就是3型系统;
    b. 位置越高,开环增益越大
    c. 在稳定的前提下,位置越高,或者越陡峭,都会减小稳态误差,提高稳态精度
  3. 中频段:反映动态响应的平稳性和快速性。
    中频段是 L ( ω ) L(\omega) L(ω) 在截止频率 ω c \omega_c ωc 附近的频段。
    结论:
    a. L ( ω ) L(\omega) L(ω) 斜率越负,则相角越小,则相角裕度越小。因此需要以 -20 dB/dec 穿越,并保持较宽的中频段范围。
    b. 对于二阶系统,中频段 L ( ω ) L(\omega) L(ω) 斜率越负,则相角裕度越小,阻尼越小,超调越大; ω c \omega_c ωc 越小,调节时间越大

相角裕度的作用 = 阻尼的作用

某一频率下的相角会受到整个幅频折线斜率分布的影响,并且离这个频率越远的折线斜率对这个频率下的相角影响会越小。(论文的第6页)另外对于工程师来说,最好要大概有以下这些印象(不是准确的)

  • -20db斜率 对应 -90度;
  • -40db斜率对应 -180度;
  • 0db斜率对应 0度。
  1. 高频段:反映高频抗扰能力。
    高频段, L ( ω ) L(\omega) L(ω) 应尽可能低。

  2. 相位滞后和延迟不是一个概念;
    大带宽会减小相位滞后,但是对噪声更加敏感,因此带宽需要进行折衷。

一般分贝定义, 10 log ⁡ 10 ( P m P r ) 10 \log_{10}(\frac{P_m}{P_r}) 10log10(PrPm)
能量一般是振幅的平方的函数,所以把平方提出来,
就得到 20 log ⁡ 10 ( M ) 20 \log_{10}(M) 20log10(M)

https://www.bilibili.com/video/BV1gx411X7k6?share_source=copy_web

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DR-ZF-

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值