TUM 数据集--下载链接

TUM数据集来自于慕尼黑工业大学

计算机视觉小组 TUM计算、信息与技术学院

1. 数据集下载主页:

https://cvg.cit.tum.de/data/datasets 包含所有种类的公开数据集。

2. 单目视觉里程计数据集介绍:Computer Vision Group - Datasets - Monocular Visual Odometry Dataset

3. RGBD相机SLAM数据集介绍:

Computer Vision Group - Datasets - RGB-D SLAM Dataset and Benchmark

这里是下载链接:

Computer Vision Group - Dataset Download

4. 宽视场鱼眼相机数据集:

Computer Vision Group - Datasets - SLAM for Omnidirectional Cameras

5. 大规模室内数据集:

TUM-LSI

6. 视觉惯性数据集:

Computer Vision Group - Datasets - Visual-Inertial Dataset

### TUM 数据集简介 TUM数据集是一个广泛用于视觉里程计(Visual Odometry, VO)、SLAM(Simultaneous Localization and Mapping)以及深度学习研究的数据集[^1]。该数据集由德国慕尼黑工业大学(Technical University of Munich, TUM)提供,主要用于评估基于RGB-D相机的算法性能。 #### 特征描述 TUM RGB-D数据集包含了多种场景下的图像序列,这些场景涵盖了室内环境的不同部分,例如办公室、走廊和会议室等。每组数据通常包括以下内容: - **彩色图像**:来自标准摄像头拍摄的RGB图片。 - **深度图**:通过Kinect或其他深度传感器获取的距离信息。 - **地面真值轨迹**:提供了精确的位置和姿态估计作为对比基准。 - **时间戳同步文件**:确保颜色帧与对应的深度测量之间的时间一致性[^3]。 #### 下载链接 官方发布的TUM RGB-D Benchmark可以在这里访问:[https://vision.in.tum.de/data/datasets/rgbd-dataset](https://vision.in.tum.de/data/datasets/rgbd-dataset)[^2]。在这个页面上,你可以找到不同类型的实验设置及其相应的记录资料包供下载使用。 此外,在上述网站还列出了详细的文档说明如何解析所提供的二进制格式文件以及其他辅助工具来处理所获得的信息流以便于进一步分析或开发新的计算机视觉解决方案。 ```python import os from urllib.request import urlretrieve def download_tum_dataset(output_dir='./tum_datasets'): base_url = 'https://vision.in.tum.de/' if not os.path.exists(output_dir): os.makedirs(output_dir) # Example URL (replace with actual desired dataset file) example_file = "data/datasets/rgbd-scenes_v1.tar.gz" destination_path = os.path.join(output_dir,example_file.split('/')[-1]) full_download_link = f"{base_url}{example_file}" print(f"Downloading from {full_download_link} to {destination_path}") urlretrieve(full_download_link, destination_path) if __name__ == "__main__": download_tum_dataset() ``` 上面给出了一段简单的Python脚本用来自动抓取指定路径下的一份压缩版样本集合到本地目录中保存下来以备后续操作之需。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值