TUM数据集

TUM数据集下载链接
https://vision.in.tum.de/data/datasets/rgbd-dataset/download
https://vision.in.tum.de/data/datasets/visual-inertial-dataset

在这里插入图片描述标定数据总共提供四种:
  1.calib-cam1~8:相机标定,本质矩阵以及两个相机之间的姿态变换
  2.calib-imu1~4:IMU标定,找到相机和IMU之间的最优姿态变换
  3.calib-vignette2~3:光晕标定??
  4.calib-imu-static2:IMU标定,只包含IMU数据,用于估计IMU噪声和随机游走。格式timestamp, gyro_x, gyro_y, gyro_z, accel_x, accel_y, accel_z, temperature

数据集序列总共5种:
  1.corridor1~5(走廊):在走廊和几个办公室拍摄,只在开始和结束有真实值。
  2.magistrale1~6(大厅):在校园内的一个大厅拍摄,只在开始和结束有真实值。
  3.outdoors1~8(户外):在校园内的室外场景拍摄,只在开始和结束有真实值。
  4.room1~6(室内):对应有5个图像序列,整个过程都带有运动捕捉系统提高的真实值。
  5.slides1~3(滑梯):在大厅中拍摄,包含一段光照极差的路程,只在开始和结束有真实值。

由于 TUM数据集是从实际环境中采集的,需要解释一下它的数据格式(数据集一般都有自己定义的格式)。在解压后,你将看到以下这些文件:

  1. rgb.txt 和 depth.txt 记录了各文件的采集时间和对应的文件名。
  2. rgb/ 和 depth/目录存放着采集到的 png 格式图像文件。彩色图像为八位三通道,深
    度图为 16 位单通道图像。文件名即采集时间。
  3. groundtruth.txt 为外部运动捕捉系统采集到的相机位姿,格式为
    (time, t x , t y , t z , q x , q y , q z , q w ),
    我们可以把它看成标准轨迹。

rgb和depth文件夹下存放着彩色图和深度图。

### 关于TUM数据集的下载与使用 #### 数据集概述 TUM数据集是由慕尼黑工业大学(Technical University of Munich, TUM)计算机视觉组发布的一个用于RGB-D SLAM研究的标准数据集[^2]。该数据集包含了多种场景下的彩色图像、深度图像以及对应的地面真值(Ground Truth),广泛应用于机器人导航、三维重建等领域。 #### 下载地址 官方提供了完整的数据集下载页面,可以通过以下链接访问并获取所需资源: **Computer Vision Group - Datasets - RGB-D SLAM Dataset and Benchmark** 如果遇到下载速度过慢的问题,可以考虑使用第三方工具加速下载过程。例如,Internet Download Manager (IDM) 是一种常用的解决方案,能够显著提升下载效率[^5]。 #### ORB-SLAM2在TUM数据集上的应用 对于希望利用ORB-SLAM2评估其性能的研究者来说,通常需要先编译并运行ORB-SLAM2源码。以下是启动程序的具体命令: ```bash ./Examples/RGB-D/rgbd_tum Vocabulary/ORBvoc.txt Examples/RGB-D/TUMX.yaml PATH_TO_SEQUENCE_FOLDER ASSOCIATIONS_FILE ``` 上述命令中各参数的意义如下: - `Vocabulary/ORBvoc.txt`:词袋模型文件路径。 - `Examples/RGB-D/TUMX.yaml`:配置文件路径,定义相机内参等相关设置。 - `PATH_TO_SEQUENCE_FOLDER`:指定序列文件夹位置。 - `ASSOCIATIONS_FILE`:时间戳关联文件路径[^1]。 #### 轨迹评估方法 完成SLAM系统的运行后,可通过Python脚本对估计轨迹与真实轨迹之间的误差进行量化分析。具体操作如下所示: ```python import evaluate_ate as ate gt_file = 'groundtruth.txt' est_file = 'CameraTrajectory.txt' rmse_error = ate.evaluate(gt_file, est_file) print(f'ATE RMSE Error: {rmse_error} cm') ``` 此脚本调用了`evaluate_ate.py`模块,最终输出的是绝对轨迹误差(Absolute Trajectory Error, ATE)的均方根误差(Root Mean Square Error, RMSE)。同时支持通过`--plot`选项生成对比图表以便直观展示结果[^4]: ```bash python evaluate_ate.py groundtruth.txt CameraTrajectory.txt --plot result.png ``` #### BundleFusion数据集转换 部分研究人员可能还需要将TUM数据集进一步处理成适用于其他框架(如BundleFusion)的形式。这一过程中涉及的主要工作包括但不限于提取彩色图、深度图及其对应的时间戳信息,并将其整理为`.sens`格式文件。值得注意的是,在准备输入数据时需特别关注位姿文件的内容一致性问题,因为这直接影响到后续算法的表现质量[^3]。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值