Mini-Splatting: Representing Scenes with a Constrained Number of Gaussians

Abstract

In this study, we explore the challenge of efficiently representing scenes with a constrained number of Gaussians. Our analysis shifts from traditional graphics and 2D computer vision to the perspective of point clouds, highlighting the inefficient spatial distribution of Gaussian representation as a key limitation in model performance.

To address this, we introduce strategies for densification including blur split and depth reinitialization, and simplification through intersection preserving and sampling.

为了解决这个问题,我们引入了稠密化的策略,包括模糊分割和深度重新初始化,以及通过交点保持和采样进行简化。

These techniques reorganize the spatial positions of the Gaussians, resulting in significant improvements across various datasets and benchmarks in terms of rendering quality, resource consumption, and storage compression. Our Mini-Splatting integrates seamlessly with the original rasterization pipeline, providing a strong baseline for future research in Gaussian-Splatting-based works.

Figure

Figure 1 

By reorganizing the spatial distribution of 3D Gaussians, our MiniSplatting reduces the number of Gaussians (in millions) while enhancing model performance in terms of rendering speed, training time, and rendering quality. The Gaussian centers of a foreground object bicycle are projected onto the rendered image as blue points, demonstrating the more uniform spatial distribution achieved by our algorithm.

Figure 2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

于初见月

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值