Abstract
In this study, we explore the challenge of efficiently representing scenes with a constrained number of Gaussians. Our analysis shifts from traditional graphics and 2D computer vision to the perspective of point clouds, highlighting the inefficient spatial distribution of Gaussian representation as a key limitation in model performance.
To address this, we introduce strategies for densification including blur split and depth reinitialization, and simplification through intersection preserving and sampling.
为了解决这个问题,我们引入了稠密化的策略,包括模糊分割和深度重新初始化,以及通过交点保持和采样进行简化。
These techniques reorganize the spatial positions of the Gaussians, resulting in significant improvements across various datasets and benchmarks in terms of rendering quality, resource consumption, and storage compression. Our Mini-Splatting integrates seamlessly with the original rasterization pipeline, providing a strong baseline for future research in Gaussian-Splatting-based works.
Figure
Figure 1
By reorganizing the spatial distribution of 3D Gaussians, our MiniSplatting reduces the number of Gaussians (in millions) while enhancing model performance in terms of rendering speed, training time, and rendering quality. The Gaussian centers of a foreground object bicycle are projected onto the rendered image as blue points, demonstrating the more uniform spatial distribution achieved by our algorithm.