pytorch的基本组成结构:torchvision.datasets和models 、 torch.nn 、torch.autograd.Variable 、 torch.optim

本文介绍了PyTorch中的关键模块,包括torchvision.datasets用于数据加载,torchvision.models包含预训练模型,torch.nn构建神经网络结构,torch.autograd.Variable实现自动梯度计算,以及torch.optim提供优化算法。通过这些组件,开发者可以高效地进行深度学习实验。
摘要由CSDN通过智能技术生成

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

以下代码参考:
https://blog.csdn.net/wsp_1138886114/article/details/83717787


torchvision: PyTorch框架中的包
.
├── torchvision.datasets                自带的数据集
|   ├── MNIST、COCO(图像标注/目标检测)、CIFAR10/CIFAR100
|   └── LSUN Classification、ImageFolder、Imagenet-12、STL10
|
├── torchvision.models                  自带的当前流行模型
|   └──AlexNet、VGG、ResNet、SqueezeNet、DenseNet
|
├── torchvision.transforms              数据处理
|   └── transforms.Compose(transforms)  一系列的transforms 操作
|       └── data augmentation           包含resize、crop等常见数据增强操作
|           ├──transformas.py
|           └──functional.py
└─── torchvision.utils
     ├── torchvision.utils.make_grid 
     └── torchvision.utils.save_image          
from __future__ import print_function, division

import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
from torch.autograd import Variable
import torchvision
from torchvision import datasets, models, transforms
import time
import os

def train_model(model, criterion, optimizer, scheduler, num_epochs=25):
    """
    在每个epoch开始时都需要如下更新:
    scheduler.step()                    模型调度 
    model.train(True)                   设置模型状态为训练状态
    optimizer.zero_grad()               将网络中的所有梯度置0
    outputs = model(inputs)             数据输入:网络的前向传播了
    torch.max(outputs.data, 1)          模型预测该样本属于哪个类别,torch.max(tensor格式,每一行的最大值)
    loss = criterion(outputs, labels)   输出outputs和原labels作为loss函数的输入就可以得到损失
    loss.backward()                     回传损失(只训练时用)
    optimizer.step()                    更新参数
    """
    since = time.time()

    best_model_wts = model.state_dict()
    best_acc = 0.0

    for epoch in range(num_epochs):
        print
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值