计算机视觉中的多视图几何<Part1—摄像机几何和单视图几何>(1)

5. 摄像机模型

摄像机模型是3D世界(物体空间)和2D图像之间的一种映射关系。具体模型主要分成有限中心的摄像机模型和“无穷远”中心的摄像机模型。

5.1 有限摄像机

  • 针孔相机模型:
    在这里插入图片描述

( X , Y , Z ) T ↦ ( f X / Z , f Y / Z ) T (X,Y,Z)^T\mapsto(fX/Z,fY/Z)^T (X,Y,Z)T(fX/Z,fY/Z)T
x = K [ I ∣ 0 ] X c a m \textbf{x}=K[I|0]X_{cam} x=K[I0]Xcam
3维欧式空间 I R 3 IR^3 IR3到2维欧式空间 I R 2 IR^2 IR2的一个映射,投影中心称为光心,光心到图像平面的垂线称为摄像机的主轴,主轴与图像平面的交点称为主点,过摄像机光心平行于图像平面的平面称为主平面。

  • 摄像机旋转与位移:
    在这里插入图片描述
    先移光心再转轴:
    X c a m = R ( X ~ − C ~ ) \textbf{X}_{cam}=R(\widetilde\textbf{X}-\widetilde{C}) Xcam=R(X C )
    X c a m = [ R − R C ~ 0 ⊤ 1 ] [ X Y Z 1 ] = [ R − R C ~ 0 ⊤ 1 ] X \textbf{X}_{cam}= \left[ \begin{array}{cc} R && -R\widetilde{C}\\ \textbf{0}^\top && 1\\ \end{array} \right] \left[ \begin{array}{c} X\\ Y\\ Z\\ 1 \end{array} \right]=\left[ \begin{array}{cc} R && -R\widetilde{C}\\ \textbf{0}^\top && 1\\ \end{array} \right]\textbf{X} Xcam=[R0RC 1]XYZ1=[R0RC 1]X
    x = K R [ I ∣ − C ~ ] X \textbf{x}=KR[I|-\widetilde{C}]\textbf{X} x=KR[IC ]X
    P = K [ R ∣ t ] P=K[R|t] P=K[Rt]
    一般的针孔相机模型 P = K R [ I ∣ − C ~ ] P=KR[I|-\widetilde{C}] P=KR[IC ]有9个自由度:3个来自 K K K( f f f, p x p_x px, p y p_y py),3个来自 R R R,3个来自 C ~ \widetilde{C} C
  • CCD摄像机:
    K = [ α x x 0 α y y 0 1 ] K= \left[ \begin{array}{ccc} \alpha_x && && x_0\\ && \alpha_y && y_0\\ && && 1 \end{array} \right] K=αxαyx0y01
    引入非等尺度因子 m x m_x mx m y m_y my,即 x x x y y y方向上图像坐标单位距离的像素数, α x = f m x \alpha_x=fm_x αx=fmx α y = f m y \alpha_y=fm_y αy=fmy x 0 = m x p x x_0=m_xp_x x0=mxpx y 0 = m y p y y_0=m_yp_y y0=mypy,CCD摄像机有10个自由度。
  • 有限射影摄像机:
    K = [ α x s x 0 α y y 0 1 ] K= \left[ \begin{array}{ccc} \alpha_x && s && x_0\\ && \alpha_y && y_0\\ && && 1 \end{array} \right] K=αxsαyx0y01
    P = M [ I ∣ M − 1 p 4 ] = K R [ I ∣ − C ~ ] P=M[I|M^{-1}\textbf{p}_4]=KR[I|-\widetilde{C}] P=M[IM1p4]=KR[IC ]
    s s s为扭曲参数,有限射影摄像机有11个自由度,把有限射影相机矩阵与左边为非奇异的 3 × 3 3\times3 3×3子矩阵的 3 × 4 3\times4 3×4齐次矩阵等同。
  • 一般射影摄像机:
    在射影摄像机层次化的最后一步是移去加在左边 3 × 3 3\times3 3×3子矩阵的非奇异性约束。之所以要求秩3,是因为如果秩小于3,那么矩阵映射的值域将是一条直线或一个点而不是2D图像。

5.2 射影摄像机

5.2.1 Camera anatomy

在这里插入图片描述
一般射影摄像机可以按 P = [ M ∣ p 4 ] P=[M|\textbf{p}_4] P=[Mp4]分块, M M M是非奇异的为有限摄像机。

  • 摄像机中心:
    摄像机中心 C C C P P P的一维右零空间(投影射线),即 P C = 0 PC=0 PC=0,当 M M M奇异时,摄像机中心在无穷远点。

  • 列矢量:
    射影摄像机的列是3维矢量, p 1 \textbf{p}_1 p1 p 2 \textbf{p}_2 p2 p 3 \textbf{p}_3 p3分别为世界坐标 X X X Y Y Y Z Z Z轴的消影点, D = ( 1 , 0 , 0 , 0 ) ⊤ D=(1, 0, 0, 0)^\top D=(1,0,0,0) p 1 = P D \textbf{p}_1=PD p1=PD p 4 \textbf{p}_4 p4是世界坐标原点的图像。
    在这里插入图片描述

  • 行矢量:
    射影摄像机的行是4维矢量,在几何上解释成特殊的世界平面。
    在这里插入图片描述

  • 主平面:
    主平面过光心平平行于图像平面,由被影像到图像上的无穷远直线上的点集 X X X组成, P X = ( x , y , 0 ) ⊤ ⇔ P 3 ⊤ X = 0 PX=(x,y,0)^\top\Leftrightarrow{P}^{3\top}X=0 PX=(x,y,0)P3X=0 P 3 P^3 P3是摄像机主平面的矢量表示。

  • 轴平面:
    P X = ( 0 , y , w ) ⊤ ⇔ P 1 ⊤ X = 0 PX=(0,y,w)^\top\Leftrightarrow{P}^{1\top}X=0 PX=(0,y,w)P1X=0 P X = ( x , 0 , w ) ⊤ ⇔ P 2 ⊤ X = 0 PX=(x,0,w)^\top\Leftrightarrow{P}^{2\top}X=0 PX=(x,0,w)P2X=0,轴平面依赖于图像 x − x- x y − y- y轴,平面 P 1 P^1 P1 P 2 P^2 P2的交线是一条连接摄像机中心和图像原点的直线,即图像原点的反投影,该直线一般不与摄像机主轴重合。

  • 主点:
    主轴是过光心并且方向垂直于主平面的直线,主轴与图像平面交于主点, P 3 ⇒ ( m 3 ⊤ , 0 ) ⇔ x 0 = M m 3 P^3\Rightarrow(\textbf{m}^{3\top},0)\Leftrightarrow{x}_0=M\textbf{m}^3 P3(m3,0)x0=Mm3

  • 主轴矢量:
    P P P的定义可以相差一个符号,产生主轴方向多义问题 m 3 m^3 m3& − m 3 -m^3 m3 v = det ⁡ ( M ) m 3 = ( 0 , 0 , 1 ) \textbf{v}=\det(M)\textbf{m}^3=(0,0,1) v=det(M)m3=(0,0,1)是主轴方向上指向摄像机前方的矢量( det ⁡ ( R ) > 0 \det(R)>0 det(R)>0)。

5.2.2 Action of a projective camera on points

  • 正向投影
    x = P D = [ M ∣ p 4 ] D = M d , D = ( b ⊤ , 0 ) ⊤ \textbf{x}=PD=[M|\textbf{p}_4]D=M\textbf{d},D=(\textbf{b}^\top,0)^\top x=PD=[Mp4]D=Md,D=(b,0)
  • 点到射线的反向投影:
    X ( λ ) = P + x + λ C \textbf{X}(\lambda)=P^+\textbf{x}+\lambda{C} X(λ)=P+x+λC
    射线可由光心 C = ( ( − M − 1 p 4 ) ⊤ , 1 ) ⊤ C=((-M^{-1}\textbf{p}_4)^\top,1)^\top C=((M1p4),1)及反向投影射线与无穷远平面交点 D = ( ( M − 1 x ) ⊤ , 0 ) ⊤ D=((M^{-1}\textbf{x})^\top,0)^\top D=((M1x),0)表示。
    X ( μ ) = μ [ M − 1 x 0 ] + [ − M − 1 p 4 1 ] = [ M − 1 ( μ x − p 4 ) 1 ] X(\mu)=\mu \left[ \begin{array}{cc} M^{-1}\textbf{x}\\ 0 \end{array} \right]+ \left[ \begin{array}{cc} -M^{-1}\textbf{p}_4\\ 1 \end{array} \right]= \left[ \begin{array}{cc} M^{-1}(\mu\textbf{x}-\textbf{p}_4)\\ 1 \end{array} \right] X(μ)=μ[M1x0]+[M1p41]=[M1(μxp4)1]

5.2.3 Depth of points

在这里插入图片描述

主轴方向上的深度( det ⁡ M > 0 , ∣ ∣ m 3 ∣ ∣ = 1 \det{M}>0,||\textbf{m}^3||=1 detM>0,m3=1):
w = P 3 ⊤ X = P 3 ⊤ ( X − C ) = m 3 ⊤ ( X ~ − C ~ ) w=P^{3\top}X=P^{3\top}(X-C)=\textbf{m}^{3\top}(\widetilde{X}-\widetilde{C}) w=P3X=P3(XC)=m3(X C )
摄像机主平面前方点 X X X的深度:
d e p t h ( X ; P ) = s i g n ( d e t M ) w T ∣ ∣ m 3 ∣ ∣ depth(X;P)=\frac{sign(detM)w}{T||\textbf{m}^3||} depth(X;P)=Tm3sign(detM)w
确定点 X X X是否在摄像机前面的一种有效方式,矩阵 P P P乘以一个常数因子,深度值不变。

5.2.4 Decomposition of the camera matix

  • 摄像机中心:
    S V D ( P C = 0 ) SVD(PC=0) SVD(PC=0)
    X = det ⁡ ( [ p 2 , p 3 , p 4 ] ) , Y = − det ⁡ ( [ p 1 , p 3 , p 4 ] ) , Z = det ⁡ ( [ p 1 , p 2 , p 4 ] ) , T = − det ⁡ ( [ p 1 , p 2 , p 3 ] ) {X}=\det([\textbf{p}_2,\textbf{p}_3,\textbf{p}_4]), {Y}=-\det([\textbf{p}_1,\textbf{p}_3,\textbf{p}_4]), {Z}=\det([\textbf{p}_1,\textbf{p}_2,\textbf{p}_4]), {T}=-\det([\textbf{p}_1,\textbf{p}_2,\textbf{p}_3]) X=det([p2,p3,p4]),Y=det([p1,p3,p4]),Z=det([p1,p2,p4]),T=det([p1,p2,p3])
  • 摄像机定向和内部参数:
    P = [ M ∣ − M C ~ ] = K [ R ∣ − R C ~ ] P=[M|-M\widetilde{C}]=K[R|-R\widetilde{C}] P=[MMC ]=K[RRC ]
    采用RQ分解把 M M M分解成 M = K R M=KR M=KR,分解的多义性可以通过要求 K K K有正对角元素来解决。

5.2.5 Euclidean vs projective spaces

P = [ 3 × 3 单 应 ] [ 1 0 0 0 0 1 0 0 0 0 1 0 ] [ 4 × 4 单 应 ] P=[3\times3单应] \left[ \begin{array}{cccc} 1&&0&&0&&0\\ 0&&1&&0&&0\\ 0&&0&&1&&0 \end{array} \right] [4\times4单应] P=[3×3]100010001000[4×4]
最一般的射影摄像机是一个从 I P 3 IP^3 IP3 I P 2 IP^2 IP2的映射,包括了一个3维空间的射影变换、一个从3维空间到图像的投影,和一个图像的射影变换的复合。QR分解要求图像和3维空间都是欧式坐标系,图像和3维空间都是射影坐标系只有 P P P的零矢量是光心的解释仍然有效, P 3 P^3 P3解释为主平面至少要求两个坐标系都是仿射坐标系, m 3 m^3 m3解释成主射线需求一个仿射图像坐标和一个欧式世界坐标系,才能恢复垂直关系。

5.3无穷远摄像机

无穷远摄像机意味着摄像机矩阵 P P P的左边 3 × 3 3\times3 3×3子矩阵是奇异的,无穷远摄像机光心 P C = 0 PC=0 PC=0,大致可分为仿射摄像机和非仿射摄像机。

5.3.1 Affine cameras在这里插入图片描述

  • 仿射摄像机:
    仿射摄像机是矩阵 P P P的最后一行 P 3 ⊤ = ( 0 , 0 , 0 , 1 ) P^{3\top}=(0,0,0,1) P3=(0,0,0,1),当焦距增加的同时摄像机与物体之间的距离也增加时,图像保持同样大小,但是透视效应消失。( t t t为摄像机沿主轴线向后移动速度, k = d t / d 0 k=d_t/d_0 k=dt/d0是保持图像大小的焦距比例因子)
    P t = K [ d t / d 0 d t / d 0 1 ] [ r 1 ⊤ − r 1 ⊤ ( C ~ − t r 3 ) r 2 ⊤ − r 2 ⊤ ( C ~ − t r 3 ) r 3 ⊤ − r 3 ⊤ ( C ~ − t r 3 ) ] = d t d 0 K [ r 1 ⊤ − r 1 ⊤ C ~ r 2 ⊤ − r 2 ⊤ C ~ r 3 ⊤ d 0 / d t d 0 ] P_t=K \left[ \begin{array}{ccc} d_t/d_0 && && \\ && d_t/d_0 && \\ && && 1 \end{array} \right] \left[ \begin{array}{cc} \textbf{r}^{1\top} && -\textbf{r}^{1\top}(\widetilde{C}-t\textbf{r}^3)\\ \textbf{r}^{2\top} && -\textbf{r}^{2\top}(\widetilde{C}-t\textbf{r}^3)\\ \textbf{r}^{3\top} && -\textbf{r}^{3\top}(\widetilde{C}-t\textbf{r}^3) \end{array} \right] =\frac{d_t}{d_0}K \left[ \begin{array}{cc} \textbf{r}^{1\top} && -\textbf{r}^{1\top}\widetilde{C}\\ \textbf{r}^{2\top} && -\textbf{r}^{2\top}\widetilde{C}\\ \textbf{r}^{3\top}d_0/d_t && d_0 \end{array} \right] Pt=Kdt/d0dt/d01r1r2r3r1(C tr3)r2(C tr3)r3(C tr3)=d0dtKr1r2r3d0/dtr1C r2C d0
    P ∞ = lim ⁡ t → ∞ P t = K [ r 1 ⊤ − r 1 ⊤ C ~ r 2 ⊤ − r 1 ⊤ C ~ 0 ⊤ d 0 ] P_{\infty}=\lim_{t\rightarrow\infty}P_t=K \left[ \begin{array}{cc} \textbf{r}^{1\top} && -\textbf{r}^{1\top}\widetilde{C}\\ \textbf{r}^{2\top} && -\textbf{r}^{1\top}\widetilde{C}\\ \textbf{0}^\top && d_0 \end{array} \right] P=tlimPt=Kr1r20r1C r1C d0

5.3.2 Error in employing an affine camera

在这里插入图片描述

在过世界原点并垂直于主轴方向 r 3 \textbf{r}^3 r3的平面上的任何点的图像在变焦和复合运动作用下保持不变。
X = [ α r 1 + β r 2 1 ] ⇒ X = [ α r 1 + β r 2 + Δ r 3 1 ] X= \left[ \begin{array}{c} \alpha\textbf{r}^1+\beta\textbf{r}^2\\ 1 \end{array} \right] \Rightarrow X= \left[ \begin{array}{c} \alpha\textbf{r}^1+\beta\textbf{r}^2+\Delta\textbf{r}^3\\ 1 \end{array} \right] X=[αr1+βr21]X=[αr1+βr2+Δr31]
x p r o j = P 0 X = K [ x ~ y ~ d 0 + Δ ] , x a f f i n e = P ∞ X = K [ x ~ y ~ d 0 ] \textbf{x}_{proj} =P_0X =K \left[ \begin{array}{c} \widetilde{x}\\ \widetilde{y}\\ d_0+\Delta \end{array} \right], \textbf{x}_{affine} =P_\infty{X} =K \left[ \begin{array}{c} \widetilde{x}\\ \widetilde{y}\\ d_0 \end{array} \right] xproj=P0X=Kx y d0+Δ,xaffine=PX=Kx y d0
x p r o j = [ K 2 × 2 x ~ + ( d 0 + Δ ) x ~ 0 d 0 + Δ ] , x a f f i n e = P ∞ X = K [ K 2 × 2 x ~ + d 0 x ~ 0 d 0 ] \textbf{x}_{proj}= \left[ \begin{array}{c} K_{2\times2}\widetilde\textbf{x}+(d_0+\Delta)\widetilde\textbf{x}_0\\ d_0+\Delta \end{array} \right], \textbf{x}_{affine} =P_\infty{X} =K \left[ \begin{array}{c} K_{2\times2}\widetilde\textbf{x}+d_0\widetilde\textbf{x}_0\\ d_0 \end{array} \right] xproj=[K2×2x +(d0+Δ)x 0d0+Δ],xaffine=PX=K[K2×2x +d0x 0d0]
x ~ a f f i n e − x ~ 0 = d 0 + Δ d 0 ( x ~ p r o j − x ~ 0 ) \widetilde\textbf{x}_{affine}-\widetilde\textbf{x}_0=\frac{d_0+\Delta}{d_0}(\widetilde\textbf{x}_{proj}-\widetilde\textbf{x}_0) x affinex 0=d0d0+Δ(x projx 0)
P ∞ P_\infty P仿射近似真实摄像机矩阵 P 0 P_0 P0的效应是把点 X X X的图像径向地靠近或远离主点,加权因子是 ( d 0 + Δ ) / d 0 = 1 + Δ / d 0 (d_0+\Delta)/d_0=1+\Delta/d_0 (d0+Δ)/d0=1+Δ/d0 x ~ a f f i n e − x ~ p r o j = Δ d 0 ( x ~ p r o j − x ~ 0 ) \widetilde\textbf{x}_{affine}-\widetilde\textbf{x}_{proj}=\frac{\Delta}{d_0}(\widetilde\textbf{x}_{proj}-\widetilde\textbf{x}_0) x affinex proj=d0Δ(x projx 0),真实透视图像的位置与仿射摄像机逼近的位置距离相差不大的条件是:(1)深度起伏相对平均深度较小,(2)点离主轴的距离小(长焦镜头易满足)。

5.3.3 Decomposition of P ∞ P_\infty P

P ∞ = [ K 2 × 2 x ~ 0 0 ^ ⊤ 1 ] [ R ^ t ^ 0 ⊤ d 0 ] P_\infty= \left[ \begin{array}{cc} K_{2\times2} && \widetilde\textbf{x}_0\\ \hat\textbf{0}^\top && 1 \end{array} \right] \left[ \begin{array}{cc} \hat{R} && \hat{t}\\ \textbf{0}^\top && d_0 \end{array} \right] P=[K2×20^x 01][R^0t^d0]
P ∞ = [ K 2 × 2 0 ^ 0 ^ ⊤ 1 ] [ R ^ t ^ 0 ⊤ 1 ] = [ K 2 × 2 x ~ 0 0 ^ ⊤ 1 ] [ R ^ 0 ^ 0 ⊤ 1 ] P_\infty= \left[ \begin{array}{cc} K_{2\times2} && \hat\textbf{0}\\ \hat\textbf{0}^\top && 1 \end{array} \right] \left[ \begin{array}{cc} \hat{R} && \hat{t}\\ \textbf{0}^\top && 1 \end{array} \right]= \left[ \begin{array}{cc} K_{2\times2} &&\widetilde\textbf{x}_0\\ \hat\textbf{0}^\top && 1 \end{array} \right] \left[ \begin{array}{cc} \hat{R} && \hat\textbf{0}\\ \textbf{0}^\top && 1 \end{array} \right] P=[K2×20^0^1][R^0t^1]=[K2×20^x 01][R^00^1]
P ∞ P_\infty P和有限摄像机的本质区别是平行投影,平行投影矩阵代替了有限摄像机的规范射影矩阵,标定矩阵主点无定义。

5.3.4 A hierarchy of affine cameras

  • 正投影(5自由度:3旋转2平移):
    P = [ 1 0 0 0 0 1 0 0 0 0 0 1 ] ⇒ P = [ r 1 ⊤ t 1 r 2 ⊤ t 2 0 ⊤ 1 ] P= \left[ \begin{array}{cccc} 1 && 0 && 0 && 0\\ 0 && 1 && 0 && 0\\ 0 && 0 && 0 && 1\\ \end{array} \right] \Rightarrow P= \left[ \begin{array}{cccc} \textbf{r}^{1\top} && t_1\\ \textbf{r}^{2\top} && t_2\\ \textbf{0}^{\top} && 1\\ \end{array} \right] P=100010000001P=r1r20t1t21
  • 缩放正投影:
    P = [ k k 1 ] [ r 1 ⊤ t 1 r 2 ⊤ t 2 0 ⊤ 1 ] = [ r 1 ⊤ t 1 r 2 ⊤ t 2 0 ⊤ 1 / k ] P= \left[ \begin{array}{ccc} k && && \\ && k && \\ && && 1 \\ \end{array} \right] \left[ \begin{array}{cc} \textbf{r}^{1\top} && t_1\\ \textbf{r}^{2\top} && t_2\\ \textbf{0}^{\top} && 1 \end{array} \right]= \left[ \begin{array}{cc} \textbf{r}^{1\top} && t_1\\ \textbf{r}^{2\top} && t_2\\ \textbf{0}^{\top} && 1/k \end{array} \right] P=kk1r1r20t1t21=r1r20t1t21/k
    缩放正投影矩阵 P = [ M ∣ t ] P=[M|t] P=[Mt]有六个自由度, M M M前两行正交并有相等的范数。
  • 弱透视投影:
    P = [ α x α y 1 ] [ r 1 ⊤ t 1 r 2 ⊤ t 2 0 ⊤ 1 ] P= \left[ \begin{array}{ccc} \alpha_x && && \\ && \alpha_y && \\ && && 1 \\ \end{array} \right] \left[ \begin{array}{cc} \textbf{r}^{1\top} && t_1\\ \textbf{r}^{2\top} && t_2\\ \textbf{0}^{\top} && 1 \end{array} \right] P=αxαy1r1r20t1t21
    弱透视投影矩阵 P = [ M ∣ t ] P=[M|t] P=[Mt]有七个自由度, M M M前两行正交。
  • 仿射摄像机 P A P_A PA
    P = [ α x s α y 1 ] [ r 1 ⊤ t 1 r 2 ⊤ t 2 0 ⊤ 1 ] P= \left[ \begin{array}{ccc} \alpha_x && s && \\ && \alpha_y && \\ && && 1 \\ \end{array} \right] \left[ \begin{array}{cc} \textbf{r}^{1\top} && t_1\\ \textbf{r}^{2\top} && t_2\\ \textbf{0}^{\top} && 1 \end{array} \right] P=αxsαy1r1r20t1t21
    仿射投影矩阵 P = [ M ∣ t ] P=[M∣t] P=[Mt]有八个自由度,对矩阵元素没有限制。
    P A = [ m 11 m 12 m 13 t 1 m 21 m 22 m 23 t 2 0 0 0 1 ] P_A= \left[ \begin{array}{cccc} m_{11} && m_{12} && m_{13} && t_1 \\ m_{21} && m_{22} && m_{23} && t_2 \\ 0 && 0 && 0 && 1 \\ \end{array} \right] PA=m11m210m12m220m13m230t1t21
    对仿射摄像机唯一的限制是 M 2 × 3 M_{2\times3} M2×3秩为2,出自对 P P P秩为3的要求。
    P = [ 3 × 3 仿 射 ] [ 1 0 0 0 0 1 0 0 0 0 0 1 ] [ 4 × 4 仿 射 ] P=[3\times3仿射] \left[ \begin{array}{cccc} 1&&0&&0&&0\\ 0&&1&&0&&0\\ 0&&0&&0&&1 \end{array} \right] [4\times4仿射] P=[3×3仿]100010000001[4×4仿]
    x ~ = M 2 × 3 X ~ + t ~ \widetilde\textbf{x}=M_{2\times3}\widetilde{X}+\widetilde\textbf{t} x =M2×3X +t

5.3.5 More properties of the affine camera

由平行投影和仿射变换(空间或图像)的复合效应组成的任何摄像机都将具有仿射形式,主平面(光心)在无穷远平面的任何射影摄像机矩阵是仿射摄像机矩阵,仿射摄像机矩阵保持平行(无穷远)关系。

5.3.6 General cameras at infinity

在这里插入图片描述
一般的无穷远摄像机可以由仿射摄像机产生的图像透视产生。

5.4 其他相机模型

5.4.1 Pushbroom cameras

在这里插入图片描述
在传感器方向上,图像是透视投影,而在传感器运动方向上则是正投影。
x ~ = x = P 1 ⊤ X , y ~ = y / z = P 2 ⊤ X P 3 ⊤ X \widetilde{x}=x=P^{1\top}X, \widetilde{y}=y/z=\frac{P^{2\top}X}{P^{3\top}X} x =x=P1X,y =y/z=P3XP2X

  • 直线的映射:
    LP摄像机将空间中的直线映射为双曲线,两个方向渐进于直线,仅有一个方向位于摄像机前面投影到图像。
    X 0 = ( X , Y , Z , 1 ) ⊤ , D = ( D X , D Y , D Z , 0 ) ⊤ X_0=(X,Y,Z,1)^\top, D=(D_X,D_Y,D_Z,0)^\top X0=(X,Y,Z,1),D=(DX,DY,DZ,0)
    x ~ = P 1 ⊤ ( X 0 + t D ) , y ~ = P 2 ⊤ ( X 0 + t D ) P 3 ⊤ ( X 0 + t D ) \widetilde{x}=P^{1\top}(X_0+tD), \widetilde{y}=\frac{P^{2\top}(X_0+tD)}{P^{3\top}(X_0+tD)} x =P1(X0+tD),y =P3(X0+tD)P2(X0+tD)
    x ~ = a + b t , y ~ = e + f t c + d t ⇒ α x ~ y ~ + β x ~ + γ y ~ + δ = 0 \widetilde{x}=a+bt, \widetilde{y}=\frac{e+ft}{c+dt} \Rightarrow \alpha\widetilde{x}\widetilde{y}+\beta\widetilde{x}+\gamma\widetilde{y}+\delta=0 x =a+bt,y =c+dte+ftαx y +βx +γy +δ=0
    α x ~ + γ = 0 , α y ~ + β = 0 \alpha\widetilde{x}+\gamma=0, \alpha\widetilde{y}+\beta=0 αx +γ=0,αy +β=0

5.4.2 Line cameras

[ x y ] = [ p 11 p 12 p 13 p 21 p 22 p 23 ] [ X Y Z ] = P 2 × 3 x \left[ \begin{array}{c} x\\ y \end{array} \right]= \left[ \begin{array}{ccc} p_{11} && p_{12} && p_{13}\\ p_{21} && p_{22} && p_{23} \end{array} \right] \left[ \begin{array}{c} X\\ Y\\ Z \end{array} \right]=P_{2\times3}\textbf{x} [xy]=[p11p21p12p22p13p23]XYZ=P2×3x
P 2 × 3 = K 2 × 2 R 2 × 2 [ I 2 × 2 ∣ − c ~ ] P_{2\times3}=K_{2\times2}R_{2\times2}[I_{2\times2}|-\widetilde\textbf{c}] P2×3=K2×2R2×2[I2×2c ]

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 计算机视觉视图几何是指在图像处理和计算机视觉过程,利用多个视角或摄像机位置对目标进行观察和分析的技术。在三维对象的重建、姿态估计、目标跟踪等领域,多视图几何具有重要的应用价值。 多视图几何涉及到三维坐标系、相机内参、相机外参、相机姿态、图像对极约束等概念和知识点。其,相机内参是指相机本身的属性参数,包括焦距、畸变系数等;相机外参则表示相机在某一位姿态下的位置和方向。 在计算机视觉领域,多视图几何研究的目的主要是将不同角度、不同分辨率的图像进行匹配,实现目标物体的准确重建和位姿估计。 针对多视图几何的研究,已经有大量的论文和教材可以参考。其,多视图几何一书是该领域较为经典的著作之一,可以在网上找到该书的PDF下载。 总之,多视图几何计算机视觉领域的重要技术之一,掌握该技术对于进行三维重建与位姿估计等任务有着重要的意义。 ### 回答2: 计算机视觉视图几何的PDF下载是指下载介绍计算机视觉视图几何的相关PDF文档,以帮助人们更好地了解和学习这一领域的知识。多视图几何计算机视觉的基本理论之一,它研究如何从多个视角拍摄的图像恢复出三维场景信息。这项技术的主要应用包括机器人视觉、三维重建、立体测量、运动分析等。多视图几何的研究领域涉及相机模型、相机标定、立体匹配和三维重建等方面。 在计算机视觉,多视图几何的研究和应用非常重要。因此,有很多学者和研究机构在这一领域开展了大量的研究工作,并出版了丰富的学术论文和研究报告。这些文献对于想要深入学习多视图几何的人来说非常有帮助。通过下载相关的PDF文档,可以更加全面地了解多视图几何的概念、原理和应用。掌握多视图几何的知识对于从事计算机视觉相关工作的人来说非常重要,可以帮助他们解决实际问题,提高研究成果的质量和效率。 总之,对于想要在计算机视觉深入学习多视图几何的人来说,下载相关的PDF文档是非常必要的。通过多视图几何的学习,可以更好地理解计算机视觉的基本理论,提高在实际工作解决问题的能力和水平。 ### 回答3: 计算机视觉的多视图几何指的是将多个视角或相机的信息融合在一起来重建三维场景的数学模型。从理论上讲,通过多视角信息,我们可以准确地推导出三维场景的各种深度、尺寸和方向等几何属性。在实际应用,多视图几何被广泛用于目标跟踪、立体视觉、3D扫描等领域。 关于多视图几何的理论掌握,可以通过阅读PDF下载资料来掌握。PDF下载通常包括多视图几何的基本理论、数学模型、算法流程等内容,帮助我们系统地学习理解多视图几何应用的原理和方法。同时,在学习过程,我们还需结合实际应用情况进行实践,不断积累经验。 总之,计算机视觉视图几何是一个重要的研究领域,对于深度学习和人工智能技术的发展有着重要的推动作用。希望广大科技工作者能够加强学习研究,把握未来科技发展趋势。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值